Ozone

the J-Link Debugger

User Manual

(7

Software Version V2.46
Manual Rev. 0
Date: August 17, 2017

Document: UM08025
DT
SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (the manufacturer) assumes no
responsibility for any errors or omissions. The manufacturer makes and you receive
no warranties or conditions, express, implied, statutory or in any communication with
you. The manufacturer specifically disclaims any implied warranty of merchantability
or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2017 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany
Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address
SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

Email: support@segger.com
Internet: http://www.segger.com

Revisions

This manual describes the J-Link Debugger software.
For further information on topics or routines not yet specified, please contact us

Revision Date By Explanation

V2.46 Rev. O 170817 |JD |Updated the version number to 2.46.

V2.45 Rev. 170810 |JD |Updated section 7.3.

V2.45 Rev. 0 |170808 |JD |Added sections 5.14.9, 4.11.7, 3.9.7 and 4.2.2.
Added section 7.3 "Command Line Arguments".
Added section 5.2.5 "Project-Local Appearance
Settings". Updated section 7.7.13 to account for
new trace configuration commands.

V2.42 Rev. 0 |170621 |JD |Updated multiple figures and sections.

V2.40 Rev. O |170515 |JD |Updated multiple figures and sections.

Corrected spelling errors. Updated sections 4.3.5,
7.12.14 and 4.18.11.

Added section 4.18: "Timeline Window".

V2.31 Rev. 0 170404 |JD |Added documentation affiliated with new command
"Project.RelocateSymbols".

V2.30 Rev. 0 170313 |JD |Updated the version number to 2.30.

=

V2.44 Rev. 0 |170712 |JD

V2.32 Rev. 0 |170410 |JD

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

Revision Date By Explanation
V2.29 Rev. 1 170306 |JD |Added system variable VAR_TRACE_PORT_WIDTH.
V2.29 Rev. 0 170129 |JD |Added section 4.7: "Call Graph Window".
Edited sections 6.3 and 7.7.9 to account for
V2.22 Rev. 4 1170118 |JD changed command "Project.AddRootPath".
Added section 5.11: Code Optimization.
V2.22 Rev. 3 1161123 |JD Updated multiple sections, fipgures and tables.
Added section 2.11.9: Data Graph Settings Dialog.
V2.22 Rev. 2 1161111 |JD Updated section 7.6: User ActioEs. ’ ?
V2.22 Rev. 1 |161031 |JD |Updated the version number to 2.22.
V2.20 Rev. 1 |160928 |JD |Added user action "Project.SetJLinkLogFile".
V2.20 Rev. O |160915 |JD |Updated the version number to 2.20.
V2.18 Rev. 0 |160802 |JD |Reworked section 4.17 "Data Graph Window".
V2.17 Rev. 6 |160718 |JD |Renamed "User Guide" to "User Manual".
V2.17 Rev. 5 |160623 |JD |Corrected spelling errors.
Integrated documentation for editable data break-
V2.17 Rev. 4 |160622 |JD |points. Updated all context menu graphics and hot-
key descriptions. Removed obsolete user actions.
V2.17 Rev. 3 | 160616 |JD |Removed obsolete user action table entries.
V2.17 Rev. 2 |160613 |JD |Fixed spelling and grammatical errors.
V2 17 Rev. 1 | 160606 | JD Adgigd section 7.1.5 ".CP Register Descriptor" and
affiliated documentation.
Added section 4.17 "Data Graph Window" and affil-
V2.17 Rev. 0 1160520 |JD iated documentation. Updatedpsection 7.3.
Added description of Watched Data "Live Updates".
V2.15Rev. 1 1160427 |JD Added sectiog 7.3 "Expressions". ?
V2.15 Rev. 0 160324 |JD |Changed name to Ozone - the J-Link Debugger.
V2.12 Rev. 2 |160225 |JD |Moved section 5.4 to 6.3 and 7.1.5 to 7.3.
Added section 5.4: File Path Resolution. Updated
V2.12 Rev. 1 |160215 |JD |file path argument descriptions. Updated require-
ments description for trace.
Added: Code Profile Window. Updated: Instruction
V2.12 Rev. 0 | 160122 |JD Trace Window, Watched Data Wpindow, SourceView
V2.10 Rev. 2 |160115 |JD |Fixed a typo in section 7.5.11.2.
V2.10 Rev. 1 |151208 |JD |Added Section 5.13.7: Path Macros.
V2.10 Rev. O |151203 |JD |Updated the Version Number.
V1.79 Rev. 0 |151118 |JD |Conditional Breakpoints / Big Endian Support.
V1.72 Rev. O |150505 |JD |Original Version.

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

About this document

This user manual describes the features and usage of J-Link Debugger, SEGGER’s
source-level debugger for embedded systems.

Typographic Conventions

Throughout this manual, the following typographic conventions are followed:

Style Used for

Body Normal text

Reference References to chapters, tables and illustrations
User Action Text commands of user actions

Title Titles of tables and illustrations

Table 1.1. Typographic conventions

Naming Conventions

Please refer to the glossary for the complete list of terms and abbreviations used in
this manual.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI
C software components (middleware) for embedded

’ systems in several industries such as telecom, medi-

/ cal technology, consumer electronics, automotive
S EG G ER industry and industrial automation.
SEGGER’s intention is to cut software development-

time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

United States Office:
http://www.segger-us.com

Corporate Office:
http://www.segger.com

EMBEDDED SOFTWARE SEGGER TOOLS
(Middleware)
emWin Flasher

Flash programmer
Flash Programming tool primarily for microcon-
trollers.

Graphics software and GUI

emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with

embOS

Real Time Operating System
— embOS is an RTOS designed to offer
[Il the benefits of a complete multitasking
[system for hard real time applications

ded Trace Macrocell).

Trace memory. supporting the ARM ETM (Embed-

with minimal resources. The profiling
PC tool embOSView is included.

emFile

File system

emFile is an embedded file system with

FAT12, FAT16 and FAT32 support.

FS emFile has been optimized for mini-
mum memory consumption in RAM and

ROM while maintaining high speed.

Various Device drivers, e.g. for NAND

and NOR flashes, SD/MMC and Com-

pactFlash cards, are available.

emUSB

USB device stack

A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

g

J-Link /7 J-Trace Related Software
Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

Table of Contents

I 11 {0 o 11 [1o o PSS 15
1.1 VAV g T L ISR O {0] o 1 PP 16
1.2 Features Of OZONe ...t eeeas 16
1.2.1 Unlimited Flash Breakpoints e e 16
1.2.2 Wide Range of Supported File FOrmatsccoooiiiiiii i 16
1.2.3 Fully Customizable User Interfacecoooiiiiiiiiiii e 16
1.2.4 Extensive Printf-SUPPOIt. e 16
1.2.5 Peripheral and CP15 Register SUPPOItooii i 16
1.2.6 Automatic Reloading of Modified Program Fileso, 16
1.2.7 SCripting INterface ... e 17
1.2.8 INSTIUCTION TrACEttt ettt ettt ettt et ettt ne e eneenens 17
1.2.9 Code Profiling ... 17
1.2.10 Data GrapPhs .. e 17
1.2.11 LI 0 =1 = PP 17
1.2.12 Advanced Memory WINOOW ... eaaas 17
1.2.13 System Variable EditOr...... ... e 17
1.2.14 Change-Level Highlightingcooiii e 17
1.2.15 Easy Data Member Navigationo e 17
1.3 R QUIN M EINT S . e e e 18
1.4 Supported Operating SYStemMIS 18
1.5 Supported Target DEVICES ...t 18
1.6 Supported Debug INterfacescoooiiiiii e 18

2 Getting Starteduiiiiieii e 19
2.1 INSTAllation ... e 20
2.1.1 Installation 0N WINOOWS ... e e ees 20
2.1.2 Uninstallation 0N WINAOWScoiiiii it e ereeeaas 20
2.1.3 INStallation ON LINUX ...ttt e eee e 21
2.1.4 UnNiNsStallation ON LiNUX ...t ettt et e et e e e e e e e aeeeaes 21
2.1.5 Installation 0N MACOS ... e e 22
2.1.6 Uninstallation 0N MacCOS ...t e 22
2.2 Using Ozone for the first timeo i 23
2.2.1 Project WizZard ..o e 23
2.2.2 Starting the Debug SeSSION. ... e 25

3 Graphical User INterface..........oouvuuuiiiiiiiiiiii e 27
3.1 (O E=1=] g o1 f T o] o = PP 28
3.1.1 ACTION TaADIES ... e 28
3.1.2 Local and Global User ACHIONS. ...t e eaeeeans 28
3.1.3 EXeCUtiNg USer ACTIONS ...ttt e e ena 28
3.1.4 Dialog ACTIONS 28
3.1.5 OMISSIDIE ArQUMENTSt 28
3.2 Change Level Highlighting. ... e 29
3.3 Y F= 1 o T VAY T o To Lo)Y PP 30
3.4 MENU Bar ... ettt 31
3.4.1 FIle MBNU L. e e 31
3.4.2 o L1 1Y =T o T PP 31
3.4.3 YTV 1= o 1 PP 32
3.4.4 DEDUG MENU .. e 32

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

3.4.5 WINAOW MENU ... e e 33
3.4.6 [L= o T =T o 33
3.5 OO DA S .. e 34
3.5.1 Showing and Hiding Toolbars........ccooiiii i e e eaas 34
3.5.2 Arranging ToOOIDArSo 34
3.5.3 Docking and Undocking TooIbarsoeeieeiiiii e eceaeeen 34
3.6 SEATUS Bl .. e eaan 35
3.6.1 Y 1= L0 LY T TS o 35
3.6.2 Window Context INformationcoviiiii i e 35
3.6.3 (070] o] aT=Tod o] o IS = L= PP 35
3.7 Debug INnformation WINAOWS ... e eeas 36
3.7.1 LO70] 01 (= Al 1Y =T o 1 P 36
3.7.2 [1S 0] = Y/ =] = 1 36
3.7.3 Change Level Highlightingoooiiiiii e e 36
3.7.4 1@ T LI T 3T [0 1 36
3.7.5 Table WINAOWS ... e ee e 36
3.7.6 K47 AT Lo [11T I 1 o 1 36
3.8 COAE WINAOWS ...t ettt e eae e aes 37
3.8.1 Program Counter TraCKingo eeeii ittt e e e e eaeeeaaanes 37
3.8.2 ACEIVE COAE WINAOW ...ttt e e e e aeen 37
3.8.3 T 1= o L= T P 38
3.8.4 Code Line Highlighting ... et eea 38
3.8.5 BrEaKPOINES . . ettt ettt 39
3.8.6 Code Profile INformationo e 39
3.9 Table WINAOWS ... e e eas 41
3.9.1 List of Table WINAOWS ... e 41
3.9.2 Selectable Table COlUMNS. ... e 41
3.9.3 Sortable Table ROWSo e 41
3.94 Editable Table Cells ... e 41
3.9.5 Letter Key NaVigationcooiii it e e et e e e e e raaneeenaanes 41
3.9.6 LIRS 1 8 11 18] = P 42
3.9.7 I Er Bar e e 42
3.10 WINAOW LAY OUT ...t et ettt e e et et e e e e e e ane e eanees 43
3.10.1 Opening and Closing WINAOWScuiieitiiei e et eaane e eeeaeeeeenan 43
3.10.2 UNdOCKING WINAOWS ...ttt et ettt e e e e e e eaneeenaanes 43
3.10.3 Docking and Stacking WINAOWScuiiiiiiiiii i e ecaaeeeas 43
3.11 D =T [o 1 44
3.11.1 User Preference Dialogccuviie ittt et 44
3.11.2 System Variable Editor ..o e 48
3.11.3 Data Breakpoint DIialog ...coveeieiiiii e et e 49
3.11.4 Breakpoint Properties Dialog.....cuuoeieiiii i e 50
3.11.5 J-LiNK Settings Dialog ...cceiiiiiii it e e e 51
3.11.6 Generic MemMOrY Dialog e e e 52
3.11.7 T T 0T T- o o 53
3.11.8 Disassembly EXPOrt Dialog ...eeeiiii it 54
3.11.9 Code Profile REPOIt DialOg .. ccuiuueiieiiii ettt ettt e eeaaneeeenas 55
3.11.10 Trace Settings DialOg. ...ccuu it et e e 58
3.11.11 Terminal Settings Dialogcveiii e 59
4 Debug Information WINAOWSuuiiiiiiiiiiiiie e e et eeeeanans 61
4.1 ST @ T8 T g =B TS 62
4.1.1 L@ T L= I 7 5T o 1 62
4.1.2 Y8 o] o T X g =0 [1 L= T IV 0= 62
4.1.3 0 0 P 62
4.1.4 37221 To T I I Y1 1] 1S 62
4.1.5 EXPression TOOIIPS ..ot ettt 63
4.1.6 DoCUMENT Tab Bar ... 63
4.1.7 Document Header Bar ... 63
4.1.8 Opening and Closing DOCUMENTS ...c.uuueiiiiii ittt eeaaneeenas 63
4.1.9 Source Line NUMDBEIS ... e 63

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

4.1.10 EXpandable SOUICEe LiNES ...t et ettt et e e eaneeeas 63
4.1.11 L0701 (=3t 1Y/ =T o 1 64
4.1.12 Syntax Highlghting ..o e e 65
4.1.13 AdVaNCEed HOtKEY S ...ttt ettt ettt e eaanneeaaanns 65
4.2 Disassembly WINAOW ... e ettt aee e 66
4.2.1 (@0 o LI VAV AT 8T [0 YN 66
4.2.2 Offline FUNCHIONAITY ...une et e et e e aaaes 66
4.2.3 g 1Y o o 4 o] T L0 1YY= 66
4.2.4 D=0 I [Yo 1= 66
4.2.5 TexXt HIghlghting ... e ettt eeaneeeanas 67
4.2.6 Y2 T2,/ o T o 67
4.2.7 (0] 1 (=3t 1Y/ =T o 1 67
4.3 INSTruction Trace WINAOWeiiiiiii ittt eeanes 69
4.3.1 Hardware ReqUITEMENTSt ettt et e e e e aaaeeeans 69
4.3.2 [T o] =X o o 1S 69
4.3.3] 101 69
4.3.4 1 1Y o o W o] TS = U] 69
4.3.5 Call Frame BlOCKSueeiii et ettt 69
4.3.6 Backtrace Highlightingccccooiiiiiii i e e 70
4.3.7 L0701 (=3t 1Y/ =T o 1 70
4.3.8 [0 1 2S£ 70
4.3.9 Automatic Data RelOad.........ceiiiiiiiiii ittt 71
4.4 Code Profile WINAOWeiiiiiiiii e ettt e e e 72
4.4.1 BLIE= Lo] TSI A/ T o o Lo 1YY 72
4.4.2 Hardware ReqUITEMENTSttt ettt e e e e e raaeeeann 72
4.4.3 (@00 [T 7= 1 1 1o 1 [N 72
4.4.4 o CTo) o g T OTo U [(=T g 73
4.4.5 T = S 73
4.4.6 L0701 (=3t 1Y/ =T o [74
4.5 (0T o X=To] [TV AY AT a o [1AV 28N 75
4.5.1 (@] o o110 = Lo 1 = o T 2 0] o 1 S 75
4.5.2 Y =TS o =T Y o 75
4.5.3 Y LSES Y= T [T 0] Lo - 75
4.5.4 (0] 1 (=3t 1Y/ =T o [76
4.5.5 ComMMANA HelP o et e 76
4.6 Breakpoint WINOOWottt ettt ettt et e e eanee e e 77
4.6.1 BLIE= Lo] TSI YA/ T o o Lo 1YY 77
4.6.2 Breakpoint AttribDULES .. .ooi e e e 77
4.6.3 Breakpoint Dialog ... e e 77
4.6.4 Expandable Source Breakpoints.coviiiiiiiiii i e e 77
4.6.5 (070 1 (=3t 1Y/ =T o 1 78
4.6.6 Editing Breakpoints Programmatically...........cccoviiiiiiiiiiiii e 78
4.6.7 Offline Breakpoint Modificationccovviiie i e 78
4.7 Call Graph WINAOW ...t ettt et e aaaneean 79
4.7.1 BLIE= Lo] TSI/ T o o Lo 1YY 79
4.7.2 L@ 1Y =T YT S 79
4.7.3 Table ColUMNS . ettt et ee e e eeeaaanneees 79
4.7.4 UNCEITAIN VaAlUEBS ...ttt ettt ettt et eeeeeeeeeaaannnns 80
4.7.5 Recursive Call Paths.ooiiiiiiiii i et eeeeeiananes 80
4.7.6 Function Pointer Calls.......ooviiiiiiiiiiii ettt et ee e eeeanas 80
4.7.7 Accelerated INitialization ...ttt e ettt 80
4.7.8 (070 1 (=3t 1Y/ =T o 1 80
4.8 Call STACK WINAOWY ..t ettt ettt ettt e e e eaaneeeanns 81
4.8.1 BLIE= Lo] TSI AT o o Lo 1YY 81
4.8.2 FUNCTION Call Frames. ..o ettt ettt et et eeeeeeeaanenees 81
4.8.3 ACTIVE Call Framie ..o ettt ettt eeeeeens 81
4.8.4 (70 1 (=3t 1Y/ =T o 1 82
4.9 Data Breakpoint WINAOW ..o e et et e eaaaes 83
4.9.1 BLIE= Lo] TSI/ T o o Lo 1YY 83
4.9.2 Data Breakpoint AttribULEScoiiiiiii i e eaneeeas 83
4.9.3 Data Breakpoint Dialog ...oouueiiiiiie it ettt e 83

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

10

4.9.4 L0 a1 1= B 1Y/ o 1 83
4.9.5 Offline Data Breakpoint Manipulationcccoviiiiiiiiiiiiii i 84
4.9.6 Editing Data Breakpoints Programmatically.............cooiiviiiiiiiiiiiiinnnn, 84
4.10 FUNCEIONS WINAOW . ..eiii ittt et ettt ettt e eae e e eanneeaanes 85
4.10.1 1= 101 L= YA T 0 o [0 85
4.10.2 FUNCEION AT DULES ... e ettt e r e e e aee e aaanes 85
4.10.3 Inline EXpanded FUNCHIONS.oiii it et e e e eaeaeeenas 85
4.10.4 Breakpoint INAICAtOrSooiii ettt e e e e e aeaneeas 85
4.10.5 L0 a1 1= M 1Y/ o 1 85
4.11 1Y/ =Y g T Y2 VYA T T T L 87
4.11.1 Change Level Highlightingooooiiiii e e 87
4.11.2 D F= Y =] = o3 o [0 1 87
4.11.3 R T2,/ o 1o 1 87
4.11.4 10 1o]| o = T 88
4.11.5 Generic MemMOrY Dialog e et e 88
4.11.6 =Y g Te T T o381 o T F= 1 (- 88
4.11.7 53021 0 ToT I B T = T T2 I X] o I 89
4.11.8 L0 01 1= M 1Y/ o T 89
4.11.9 Pasting Of Clipboard Contentciiiiiiii i e eeanes 89
4.11.10 U] T o L= 1 g o3 = g o = 89
4.12 REISTEr WINAOW ..ttt ettt e e e eaaaaeeaans 90
4.12.1 1= 101 L= YA T a o [0 90
4.12.2 SV D FIlES e e 90
4.12.3 ST 0 TS = g 1] U] o 90
4.12.4 BIt FIelaS e e 91
4.12.5 Processor Operating MO ...ttt e e e e eaee e naanes 91
4.12.6 L0 01 1= M 1Y/ o 1 91
4.13 SOUNCE FIlesS WINAOW ... et a e eaas 92
4.13.1 BIE= 101 L= YA T 0 o [0 92
4.13.2 Source File INformation.ccooiiiii i e e 92
4.13.3 UNresolved SOUICe FIlES ... e eaaaes 92
4.13.4 L0 a1 1= M 1Y/ o 1 92
4.14 e Yo=Y I D = o= YA AT T [) 93
4.14.1 1= 101 L= T 0 o [0 93
4.14.2 Call Site SYMDOIS ... s 93
4.14.3 U o 1Y/ o o [93
4.14.4 Data Breakpoint INAiCatorcviiiiiiiiii i e 93
4.14.5 L0 01 1= M 17/ o 1 93
4.15 Global Data WINAOW ...t ettt e e eeeaeeann 95
4.15.1 1= 101 L= AT 0 o [0 95
4.15.2 Data Breakpoint INAiCatoroviiiiiiiii e e e 95
4.15.3 L0 a1 1= M 1Y/ o 1 95
4.16 Watched Data WIiNAOWot e et aee e aeanees 96
4.16.1 BIE= 10 L= YL T g o Lo 96
4.16.2 T o] =11 1] o 1 96
4.16.3 LIVE WatCRES ..o e e et 96
4.16.4 = U= 11T Yo7 0 o 1 96
4.16.5 LAY 2= L (3 T 5 - o T 96
4.16.6 L0 01 1= M 1Y/ o 1 97
4.17 L= 8 2.0 11 T= LAY 2T U [1 98
4.17.1 SUppPOrted 1O TECHNIQUES ...ttt et et e e e e eanaeeenas 98
4.17.2 JLIC= 0 1 = U 0 o 98
4.17.3 L0 01 1= N 1Y/ o 1 o8
4.17.4 ASYNChronous User INPUL ... oo e e eannes 99
4.18 TIMEINE WINAOW ... ettt ettt e et r e e eaneeaaans 100
4.18.1 =0 1 =T 0 =T) £ 100
4.18.2 L0 1 =T YT 100
4.18.3 (o= o 0] T =10 1= 100
4.18.4 =T 1T 10 T] o 1 100
4.18.5 74 o Yo 1 £ 1 1 1 =0 100
4.18.6 Backtrace Highlightingcooiiiiiiii e e e 101

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

4.18.7 AULOMALIC RElOAd ... e 101
4.18.8 o= 1] V1 T 102
4.18.9 4o o 1 o 0 T PR 102
4.18.10 Task Context Highlightingcooooiiiii e 102
4.18.11 (O] 01 (= 1Y =T o 1 P 102
4.18.12 TOO DAY .. e 102
4.19 Data Graph WINAOW ...t et ettt aaneeeaas 103
4.19.1 L@ Y T 103
4.19.2 =0 1T r=T 0 g =T) 103
4.19.3 L4728 T [1TV - o 11 103
4.19.4 Y (U] o I AT 103
4.19.5 LT =T o] 1T T 105
4.19.6 Y= 1 0] 011 TS TN ATV 107
4.19.7 TOOIDAY <. e e 108
4.20 FINA ReSUITS WINAOWt e 109
4.20.1 SeArCh RESUILS ...t e 109
4.20.2 T T 0 - o o 109
4.20.3 (O] 01 (=5 1Y =T o 1 PP 109
5 Debugging With OZONEccccoiiiiiiii e 111
5.1 Debugging WOTK FIOW ...t et e et e e v aaeeaaas 112
5.2 [0] =03 113
5.2.1 Project File EXamPIe ... e 113
5.2.2 OpPENING ProjJeCt FileS .unniiiiii ittt e et eeeanas 113
5.2.3 Creating Project FIles ... e et eaaaas 113
5.2.4 o 0 1= AT = o Vo 114
5.2.5 User Perspective Files ... e e e 114
5.3 Program FileS ... e et e 115
5.3.1 Y8 o] oo g 1Yo I T 1= T N o 1 115
5.3.2 Symbol INformMation ..o e 115
5.3.3 OpeNINg Program FileSou. it et e 115
5.3.4 Automatic DOWNIOAA e 115
5.3.5 [0 - = T =1 o0 o [o o [115
54 Starting the DebUQg SeSSION ...t e 116
541 COoNNECHION MOAE ... e e es 116
5.4.2 Initial Program OpPerationcceiiiii it et e et e e v eeaneeenanas 117
5.4.3 Reprogramming the Startup SEQUENCEovuiiiiiii i eeeaaeee 117
544 ViSIDle EFfECtS ... e 117
5.5 EXECULION POINT ... e 118
55.1 Observing the Execution POINt.... ... e eeaes 118
5.5.2 Setting the EXecUution POINT.......ooiiiiiii i e e eaaaas 118
5.6 Debugging CoONtTrOlS. .. .ot ettt aaas 119
5.6.1 T P 119
5.6.2] 1= o 119
5.6.3 R SUIMIE . ettt et 120
5.6.4 T 120
5.7 [ST= T 2 o T 11 1 = 121
5.7.1 Code BreakPOiNts ...ttt et e, 121
5.7.2 INStruction BreaKpOiNts ... oo e et e e e eaneeeaanas 121
5.7.3 U L o A o @ =1 == 14 o T | 1 £ 121
5.7.4 Conditional Breakpoints.ttt et e e e 121
5.7.5 Data BreakPOiNts. ..ottt e 122
5.7.6 Breakpoint Implementation..........ccooiiiiii i 123
57.7 Offline Breakpoint Modificationoiiiiiiiiiii e 123
5.7.8 Unlimited Flash Breakpointsoc.eeeiiiiii i et v e eeeanee 123
5.8 [g Te] gr= T 0 g TS = 1 124
5.8.1 Data SYMDOIS ... e 124
5.8.2 Function Calling HierarChyoooiiiiiiii e e 124
5.8.3 Instruction EXecution HiSTOrYooiiiiiiiii e eeaas 124
5.8.4 17/ 2121 o T I e Y11 T 1= 124

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

12

5.9 Hardware State.o e 125
5.9.1 @8 =T] 1= 125
5.9.2 Y @ U 1V =Y o o o Y 125
5.10 INnspecting a RUNNING PrOgram ...t e e e e v e eaaeeann 126
5.10.1 LIVE WatCRES e 126
5.10.2 3.1 10T I = Vo = 126
5.10.3] 1 == 0 11T [1 = U= T 126
5.11 Advanced Program Analysis And Optimization Hints........................... 127
5.11.1 Program Performance Optimizationcooiiiiiiiiiiii i reaeeeaeas 127
5.12 Static Program ENtities ...t et eaaaes 129
5.12.1 B T3 1 o = 129
5.12.2 SOUICE FIlES et e 129
5.13 Program OUT DU ...ttt e e e e e e eaaan 130
5.13.1 Real Time Transer ... e as 130
5.13.2 S O e 130
5.13.3 =1 0 21110253 [o 130
5.14 Other Debugging ACHIVItIES ... e e eaaae 131
5.14.1 Responding to INPUL REQUESTSciiniiii it e e eanaas 131
5.14.2 FINAING TEXE OCCUITENCES ..etitiiett ettt ettt e e et et ea e e e eeaannee e aaaneannnns 131
5.14.3 INSPECTING LOG MESSA0ES. .. uuteett ettt ettt ettt e e e et e e e eaanneeenn 131
5.14.4 EValuating EXPreSSIONSuiiit ittt e ettt e e e et et e e eaaaneaeann 131
5.14.5 Downloading Program Filescciiiiiii e e eeee 131
5.14.6 Locating Missing SoUrce FilesS......coviiiiiii e e 131
5.14.7 Performing Memory 1O ... et e ettt e e aan 132
5.14.8 Relocating SYMbOIS ... e e 132
5.14.9 Initializing the Trace Cacheccooiiiiiiii e e e e 132
5.14.10 Stopping the Debug SeSSIiON ...t e 132
6 SCripting INtEITACEvvnii e 133
6.1 ST o T 0 1 A] =T 134
6.1.1 S Yod] o) €1 T = o U = Vo [134
6.1.2 Yo] o) A 1 T T} = 134
6.1.3 e I B T 1 o =P 135
6.1.4 EXECUtING SCHIPt FIlES et ettt e eaeas 135
6.2 Process Replacement FUNCLIONSooiiiiiiiii i e eae e 136
6.2.1 [0 7= 0180 5] =Y 136
6.2.2 JLIE= Lo 1= @0 1= o 137
6.2.3 TargetDOWNIOAA ...ttt et ettt 137
6.2.4 JLIE= Lo =1 T 137
6.3 File Path ReSOIULION ... e 139
6.3.1 File Path Resolution SEQUENCEccviiiii it eeaas 139
6.3.2 Operating System SPECITICS ..ot e e 139
A Y o] 1= 1 o | G 141
7.1 V2= 11U ST I T o o @] = 142
7.1.1 [=0 [BT=T o oy YA DTS o g]] {01 N 142
7.1.2 Source Code Location DeSCIIPTOr .. .uuv it e e eaneeann 142
7.1.3 (@01 Lo] gl I 7= o] g o) oY 142
7.1.4 [0]) oD 1= Y= o 101 o] 143
7.1.5 Coprocessor RegiSter DESCIIPION ettt et e e raaneeeann 143
7. Y451 = T O 0] 1 13 1= 1 1 144
7.2.1 HOSE INterfaCes . i 144
7.2.2 Target INTerfacCes ..ooiii i et e 144
7.2.3 Boolean Value CoNStantsS.......oiiiiiii i e 144
7.2.4 Value Display FOrMaAatscoiii ittt et e e et v e eeaanees 144
7.2.5 Memory AcCesS WIAENSooiiii i e 145
7.2.6 o o TSN V7 o 12 145
7.2.7 (@70] o] aT=Tod T] o 1Y, o T [145
7.2.8 RESET MO Sttt 145

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

7.2.9 Breakpoint Implementation TYPES ..ovieiiiii e e aee 146
7.2.10 TrACE SOUICES ..ttt ittt ettt ettt ettt e ettt e et et e e et e e e saee e reaneeennn 146
7.2.11 Stepping Behaviour FIAgS . ..o e e et 146
7.2.12 FONt 1deNfiers ... e 147
7.2.13 (07o] [0 gl Lo [T o |] 1= 4= 147
7.2.14 User Preference Identifierso e 148
7.2.15 System Variable ldentifiers.... ..o s 149
7.3 Command Line ArQUMENTS ...ttt et et r e e e e e aaanees 151
7.3.1 [o T=Tox dl =T o T=T = [o 151
7.3.2 Appearance and LOGQING «..ueeeei ettt et e e e et eeanaee e eaaanneaann 151
7.4 [T o] S TSTT o] = 152
7.4.1 Areas Of APPlICAtION ... 152
7.4.2 1@ 0T = o £ 152
7.4.3 L@ 6 1= 7= 1 0] (= 152
7.5 (DT 1 r =T o w0] V20 1Y/ = Vo ol 1 153
7.6 Startup Sequence FIOW Chart ... e 154
7.7 ACHION Tables ..o 155
7.7.1 FIlE AT IONS e e 155
7.7.2 Bt ACTIONS .t e 155
7.7.3 I X o4 1) o 155
7.7.4 LU o 1 Y202 o3 [0 1 156
7.7.5 VIBW ACTIONS Lottt ettt et ettt 156
7.7.6 TOOIDAr ACTIONS .. e 156
7.7.7 WINAOW ACTIONS . . e e aeen 156
7.7.8 (DT o 11 T AN T o = 157
7.7.9 J-LiNK ACTIONS .ttt e 157
7.7.10 [= T 1 T] o = 157
7.7.11 L= Lo 1= Ao o Lo 158
7.7.12 Breakpoint ACTIONS.ttt e 158
7.7.13 o 0 1= o A2 o3 1 [0 £ 159
7.7.14 Code Profile ACTIONS ... e 159
7.8 L =Y = i o o] = 160
7.8.1 FIlE AT IONS e e 160
7.8.2 Bt ACTIONS ..t e e 164
7.8.3 WINAOW ACTIONS . . e e aeen 168
7.8.4 TOOIDAr ACTIONS .. e 170
7.8.5 VIBW ACTIONS Lottt et ettt et 171
7.8.6 LU o 1 Y2 A o3 [0 1 174
7.8.7 97T o 10 T AN o T o = 175
7.8.8 [= T] o 1= 180
7.8.9 o 0 1= A2 o3 1 o 1 181
7.8.10 Code Profile ACTIONS ... e 188
7.8.11 L= Lo [Ao o Lo 190
7.8.12 J-LiNK ACTIONS ettt 194
7.8.13 Breakpoint ACTIONS.ttt e 195
7.8.14 I o4 1) o 204
B GlOSSANY ..oieiiiii it aaaaa 209

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

14

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

15

Chapter 1

Introduction

Ozone is SEGGER's user-friendly and high-performance debugger for ARM Microcontroller
programs. This manual explains the debugger’s usage and functionality. The reader is wel-
come to send feedback about this manual and suggestions for improvement to
support_jlink@segger.com.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

mailto:support_jlink@segger.com

16 CHAPTER 1 Introduction

1.1 What is Ozone?

Ozone is a source-level debugger for embedded software applications running on
ARM-Microcontroller units. It was developed with three design goals in mind: user-
friendly, high performance and advanced feature set.

Ozone is tightly coupled with SEGGER's set of J-Link debug probes to ensure optimal
performance and user experience. J-Link's instruction set simulation capability
makes Ozone one of the fastest stepping debuggers for embedded systems on the
market.

Users are encouraged to send feedback and suggestions for improvement to
support_jlink@segger.com.

1.2 Features of Ozone

Ozone has a rich set of features and capabilities. The following list gives a quick
overview. Each feature and its usage is explained in more detail in section 3 as well
as later sections of the manual.

1.2.1 Unlimited Flash Breakpoints

Ozone integrates SEGGER's flash-breakpoint technology which allows users to set an
unlimited number of software breakpoints in flash memory.

1.2.2 Wide Range of Supported File Formats

Ozone supports a wide range of program and data file formats:

e ELF or compatible files (*.elf, *.out, *.axf)
< Motorola s-record files (*.srec, *.mot)

< Intel hex files (*.hex)

e Binary data files (*.bin)

1.2.3 Fully Customizable User Interface

Ozone features a fully customizable multi-window user interface. All windows can be
undocked from the main window and freely positioned and resized on the desktop.
Fonts, colors and toolbars can be adjusted according to the user’s preference. Con-
tent can be moved amongst windows via Drag&Drop.

1.2.4 Extensive Printf-Support

Ozone can capture printf-output by the embedded application via the Cortex-M SWO
capability, Semihosting and SEGGER's Real Time Transfer (RTT) technology that pro-
vides extremely fast 10 coupled with low MCU intrusion.

1.2.5 Peripheral and CP15 Register Support

Ozone supports System View Description files that describe the memory-mapped
(peripheral) register set of the selected MCU. Once an SVD-File is specified, the reg-
ister window displays peripheral registers and their bit-fields next to the core regis-
ters of the selected MCU. Additionally, the register window allows users to observe
and edit coprocessor-15 registers of the selected MCU.

1.2.6 Automatic Reloading of Modified Program Files

Ozone can detect changes made to the program file via an external compiler and pro-
vides the user with the option to reload the modified file.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

mailto:support_jlink@segger.com
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php

17

1.2.7 Scripting Interface

Ozone features a C-programming language conformant programming (scripting)
interface that enables users to reconfigure the graphical user interface and most
parts of the debugging work flow via script files. All actions that are accessible via
the graphical user interface have an affiliated script function that can be evoked from
script files or the debugger's console window.

1.2.8 Instruction Trace

Ozone is able to trace program execution on a machine instruction level. The history
of executed machine instructions is accessible via the instruction trace window and —
used in conjunction with the call stack window — gives the developer additional
insight into the program’s execution path.

1.2.9 Code Profiling

Ozone’s code profiling features assist users in optimizing their program code. The
Code Profile Window displays CPU load and code coverage statistics selectively at a
file, function or instruction level. Code profiles can be saved to disk in human-read-
able or in CSV format for further processing. Ozone’s code windows display code pro-
file statistics inlined with the code. A color coding scheme is used to indicate to users
source code lines and machine instructions that can be removed or improved.

1.2.10 Data Graphs

Ozone is able to trace symbol values and values of arbitrary C-style expressions at
time resolutions of down to 1 microseconds and visualize the resulting time signals
within the Data Graph Window.

1.2.11 Timeline

Ozone’s Timeline Window visualizes the course of the program’s call stack over time.
It provides advanced navigation features that allow users to quickly understand rela-
tive and absolute call frame sizes and positions, which make it a great profiling tool
as well.

1.2.12 Advanced Memory Window

Ozone's memory window implements an asynchronous scrolling approach that has
been optimized for scrolling performance at both high and low MCU interface speeds.
The memory window is fully editable and has many advanced features such as disk-
10, periodic updating and copy/paste of clipboard content.

1.2.13 System Variable Editor

Ozone’s System Variable Editor enables users to modify behavioral debugger settings
from a central location.

1.2.14 Change-Level Highlighting

Ozone emphasizes changes to user interface values with a set of three different col-
ors depending on the recency of the change. Change levels are updated each time
program execution is advanced.

1.2.15 Easy Data Member Navigation

All of Ozone’s symbol windows are based on a tree-structure which permits users to
easily navigate through the data hierarchy of complex symbols.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 1 Introduction

1.3 Requirements

To use Ozone, the following hardware and software requirements must be met:
e Windows 2000 or later operating system
e 1 gigahertz (GHz) or faster 32-bit (x86) or 64-bit (x64) processor
e 1 gigabyte (GB) RAM
e 100 megabyte (MB) available hard disk space
e J-Link or J-Trace debug probe
e JTAG or SWD data cable to connect the MCU with the debug probe
(not needed for J-Link OB)

1.4 Supported Operating Systems

Ozone currently supports the following operating systems:

e Microsoft Windows 2000
e Microsoft Windows XP

e Microsoft Windows XP x64
e Windows Vista Microsoft
e Windows Vista x64

e Windows 7

e Windows 7 x64

e Windows 8

e Windows 8 x64

e Windows 10

e Linux

e macO0S/0S X

1.5 Supported Target Devices

Ozone currently works in conjunction with Microcontrollers (target devices) based on
the following ARM architecture profiles:

= ARM7
- ARM9
- ARM11

- Cortex-M
- Cortex-A
e Cortex-R

1.6 Supported Debug Interfaces

Ozone communicates with the MCU via SEGGER's J-Link or J-Trace debug probe. Other
debug probes or communication technologies are not supported.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

19

Chapter 2
Getting Started

This chapter contains a quick start guide. It covers the installation procedure and explains how
to use the Project Wizard in order to create a basic project file. The chapter completes by
explaining how a debug session is entered.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 Getting Started

2.1 Installation

This section explains how Ozone is installed and deinstalled from the operating sys-
tem.

2.1.1 Installation on Windows

Ozone for Windows ships as an executable file that installs the debugger into a user-
specified destination folder. The installer consists of four pages and guides the user
through the installation process. The pages themselves are self-explanatory and
users should have no difficulty following the instructions.

43, 3-Link Debugger ¥1.71a Setup - 0] x|

Choosze Install Location
hoose the Folder in which toinstall 3-Link Debugger 1,714, @
i=F

Setup will install I-Link Debugger ¥1.71a in the Following Folder. To install in a different Folder,
click Browse and seleck another Folder, Click Mext to continue,

— Destination Folder

I C:AProgram Files (x36)5EGGER) I-Link Debugger W1.71a Browse. .. |

Space reguired: 15,.5M6
Space available: 1,2GE

Iullsaft Install Svskem ve 46

< Back I Mext = I Zancel

Figure 2.1. First page of the windows installer

After installation, Ozone can be started by double-clicking on the executable file that
is located in the destination folder. Alternatively, the debugger can be started by exe-
cuting the desktop or start menu shortcuts.

2.1.1.1 Multiple Installed Versions

Multiple versions of Ozone can co-exist on the host system if they are installed into
different folders. Application settings, such as user interface fonts, are shared
amongst the installed versions.

2.1.2 Uninstallation on Windows

Ozone can be uninstalled from the operating system by running the uninstaller’s exe-
cutable file (Uninstall.exe) that is located in the installation folder. The uninstaller is
very simple to use; it only displays a single page that offers the option to keep the
debugger’s application settings intact or not. After clicking the uninstall button, the
uninstallation procedure is complete.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

21

2.1.3 Installation on Linux

Ozone for Linux ships as an installer (.deb or .rpm) or alternatively as a binary
archive (.tgz).

2.1.3.1 Installer

The Linux installer requires no user interaction and installs Ozone into folder /opt/
SEGGER/ozone/<version>. A symlink to the executable file is copied to folder /usr/
bin. The installer automatically resolves unmet library dependencies so that users do
not have to install libraries manually.

SEGGER provides two individual Linux installers for debian and redhat distributions.
Both installers behave exactly the same way and require an internet connection.

2.1.3.2 Binary Archive

The binary archive includes all relevant files in a single compacted folder. This folder
can be extracted to any location on the file system. When using the binary archive to
install Ozone, please also make sure that the host system satisfies all library depen-
dencies (see “Library Dependencies” on page 21).

2.1.3.3 Library Dependencies

The following libraries must be present on the host system in order to run Ozone:

e libfreetype6 2.4.8 or above
e libfontconfigl 2.8.0 or above
e libext6 1.3.0 or above
e libstdc++6 4.6.3 or above
e libgccl 4.6.3 or above
e libc6 2.15 or above

Please note that Ozone’s Linux installer automatically resolves unmet dependencies
and installs library files as required.
2.1.3.4 Multiple Installed Versions

Multiple versions of Ozone can co-exist on the host system if they are installed into
different folders. Application settings, such as user interface fonts, are shared
amongst the installed versions.

2.1.4 Uninstallation on Linux

Ozone can be uninstalled from Linux either by using a graphical package manager
such as synaptic or by executing a shell command (see “Uninstall Commands” on
page 21).

2.1.4.1 Uninstall Commands

Debian
sudo dpkg --remove Ozone

Redhat
sudo yum remove Ozone

2.1.4.2 Removing Application Settings

Ozone’s persistent application settings are stored within the hidden file "$Home/.con-
fig/SEGGER/Ozone.conf". In order to erase Ozone’s persistent application settings,
please delete this file.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 2 Getting Started

2.1.5 Installation on macOS

Ozone for macOS ships as an installer or alternatively as a disk image. The same
installer or disk image is used for both 32 and 64 bit systems since it provides uni-
versal binaries.

2.1.5.1 Installer

The macOS-installer installs Ozone into the application folder. It provides a single
installation option, which is the choice of the installation disk (see figure MacOS
installer on page 22).

Select a Destination

© Introduction | Select the disk where vou want to install the Ozone - the J-

& License | Link Debugger V2.22d software.
& Destination Select . -
Ll
@ Installation Type (A
@ Installation H;
@ Summary Macintosh HD

2,18 GB available
59,81 CBE total

Installing this software requires 71,7 MB of space.

D —

/ SEGGER

Co Back Continue

Figure 2.2. MacOS installer

2.1.5.2 Disk Image

The disk image mounts as an external drive that contains the Ozone executable and
its user documentation. Ozone can be run from the mounted disk out of the box - no
further setup steps are required.

2.1.5.3 Multiple Installed Versions

Currently only one version of Ozone can be installed on macOS. Installing a version
will overwrite the previously installed version.

2.1.6 Uninstallation on macOS

To uninstall Ozone from macOS, move its application folder to the trash bin. The
application folder is "/applications/SEGGER/ozone".

2.1.6.1 Removing Application Settings

Ozone’s persistent application settings are stored in the hidden file $Home/Library/
Preferences/com.segger.Ozone.plist. In order to erase Ozone’s persistent application
settings, please delete this file.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

23

2.2 Using Ozone for the first time

When running Ozone for the first time, users are presented with a default user inter-
face layout and the Project Wizard pops up. The Project Wizard will continue to pop
up on start-up until the first project was created or opened.

2.2.1 Project Wizard

The Project Wizard provides a graphical facility to specify the required settings
needed to start a debug session. The wizard hosts a total of three settings pages that
are described in more detail below. The user may navigate forward and backward
through these pages via the next and back buttons.

“"New Project Wizard 2 x

Target Device
Choose a Target Device

Device

| sTM32Fa071G [

Peripherals (optional)

I i JlconfigiPeripher als/STM32F4071G, svd I

< Back: Mext = Zancel

Figure 2.3. First page of the Project Wizard

Device

On the Project Wizard's first page, the user is asked to select the MCU to be
debugged on. By clicking on the dotted button, a complete list of MCU's grouped by
vendors is opened in a separate dialog from which the user can choose the desired
device.

Peripherals

The user may optionally specify a peripheral register set description file that
describes the memory-mapped register set of the selected MCU. If a valid register-
set description file is specified, peripheral registers will be observable and editable
via the debugger's Register Window (see “Register Window” on page 90).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 2 Getting Started

“"New Project Wizard d |

Connection Settings
Choose a Target and Hosk Interface

Target Inkterface Target Interface Speed
[118G R4 R =]
Host Interface Serial Mo {optional)

= 5

< Back Mexk = Cancel

Figure 2.4. Second page of the Project Wizard

On the second page of the Project Wizard, J-Link settings are defined.

Target Interface

The target interface setting specifies how the J-Link debug probe is connected to the
MCU. Ozone currently supports the JTAG and SWD target interfaces.

Target Interface Speed

The target interface speed parameter controls the communication speed with the
MCU. The range of accepted values is 1 kHz to 50 MHz. Please note that some MCUs
require a low, others an adaptive target interface speed throughout the initial con-
nection phase. Usually, the target interface speed can be increased after initial con-
nection, when certain peripheral registers of the MCU were initialized. In case the
connection fails, it is advised to retry connecting at a low or adaptive target interface
speed.

Host Interface

The host interface parameter specifies how the J-Link debug probe is connected to
the PC hosting the debugger (host-PC). All J-Link models provide a USB interface.
Some J-Link models provide an additional Ethernet interface which is especially use-
ful for debugging an embedded application from a remote host-PC.

Serial No / IP Address

In case multiple debug probes are connected to the host-PC via USB, the user may
enter the serial number of the debug probe he/she wishes to use. If no serial number
is given, the user will need to specify the serial number via a dialog that pops up
when starting the debug session. If Ethernet is selected as host interface, the caption
of this field changes to IP Address and the user may enter the IP address of the
debug probe to connect to.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

25

“Mew Project Wizard d |

Data File
Chonose the Program to be debugged

[rata File {optional)

IC:,l'ExampIes,l'BIinkﬂ;.f_STM324EIG,I'BIink~;.-'_STM324DG.EIF| I

< Back. Eirish Zancel

Figure 2.5. Last page of the Project Wizard

On the last page of the Project Wizard, the user specifies the debugee.

Data File

This input field allows the user to specify the desired program to debug. Please note
that only ELF or compatible program files contain symbol information. When specify-
ing a program file without symbol information, the debugging features of Ozone are
limited (see “Symbol Information” on page 115).

Applying Project Changes Persistently

Project settings applied via the Project Wizard are persistent, i.e. remain valid after
the debugger is closed. In addition, any manual changes carried out within the
project file are persistent. However, project settings applied by other means — for
instance via the System Variable Editor — are only valid for the current session.

Completing the Project Wizard

When the user completes the Project Wizard, a new project with the specified set-
tings is created. The project can be saved to disk thereafter.

State after Completing the Project Wizard

After completing the Project Wizard, the source file containing the program's entry
function is opened inside the Source Viewer. However, the debugger is still offline,
i.e. a J-Link connection to the MCU has not yet been established. At this point, only
windows whose content does not depend on MCU data are operational and display con-
tent. To put the remaining windows into use and to begin debugging the program, the
debug session must be started.

2.2.2 Starting the Debug Session

The debug session is started by clicking on the green start button in the debug tool
bar or by hitting the shortcut F5. After the startup procedure is complete, the user
may start to debug the application program using the controls of the Debug Menu.
The debugging work flow is described in detail in Chapter 5.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 2 Getting Started

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

27

Chapter 3

Graphical User Interface

This chapter provides a description of Ozone's graphical user interface and its usage. The
focus lies on a brief description of graphical elements. Chapter 5 will revisit the debugger
from a functional perspective.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 3 Graphical User Interface

3.1 User Actions

A user action (or action for short) is a particular operation within the debugger that
can be triggered via the user interface or programmatically from a script function.
Ozone provides a set of around 200 user actions.

3.1.1 Action Tables

Appendix 7.7 provides multiple tables that contain quick facts on all user actions. The
action tables are particularly well suited as a reference when running the debugger
from the command prompt or when writing script functions.

3.1.2 Local and Global User Actions

A user action is either a local or a global action. A local action is sensitive to the posi-
tion of the input focus or the current selection, while a global action is not. Amongst
other things, this has implications on using hotkeys, as is explained in section 3.1.3.

3.1.3 Executing User Actions

User actions can (potentially) be executed in any of the ways listed in Table 3.1.

Execution Method Description

Menu A user action can be executed by clicking on its menu item.
Toolbar A user action can be executed by clicking on its tool button.
Hotkey A user action can be executed by pressing its hotkey.

A user action can be executed by entering its command into
the command prompt.

A user action can be executed by placing its command into a
script function.

Command Prompt

Script Function

Table 3.1. Alternative ways of executing user actions

However, some user actions do not have an associated text command and thus can-
not be executed from the command prompt or from a script function. On the other
hand, some actions can only be executed from these locations, but have no affiliated
user interface element. Furthermore, some actions do not provide a hotkey. Appendix
7.8 provides information about which method of execution is available for the differ-
ent user actions.

3.1.3.1 Hotkeys

Multiple local user actions may share the same hotkey. As a consequence, a local
user action can only be triggered via its hotkey when the window containing the
action is visible and has the input focus. On the contrary, global user actions have
unique hotkeys that can be triggered without restriction.

3.1.4 Dialog Actions

Several user actions execute a dialog. The fact that a user action executes a dialog is
indicated by three dots that follow the action’s name within user interface menus.

3.1.5 Omissible Arguments

When a required argument is omitted from a user action command, an input dialog
will pop up that allows the user to complete the missing argument at execution time.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

29

3.2 Change Level Highlighting

Ozone emphasizes changed values with a set of three different colors that indicate
the recency of the change. The change level of a particular value is defined as the
amount of times the program was stepped since the value has changed. Table 3.2
depicts the default colors that are assigned to the different change levels.

Change Level Meaning
_ The value has changed one program step ago.
Level2 The value has changed two program steps ago.
Level3 The value has changed three program steps ago.
Lovelt and above) | 1 VAIeE 12 changed ¢ of more program seps ago o

Table 3.2. Value change levels

Both foreground and background colors used for change level highlighting can be
adjusted via the User Preference Dialog (see “User Preference Dialog” on page 44) or
via the user action Edit.Color (see “Edit.Color” on page 166).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

30

3.3 Main Window

Ozone’s Main Window consists of the following elements, listed by their location
within the window from top to bottom:

CHAPTER 3 Graphical User Interface

. Menu Bar

e Tool Bar

e Content Area
e Status Bar

These components will be explained further down this
dow is described (see the illustration below):

chapter. First, the Main Win-

ky_STM32F103_Keil, ky.anf - SEGGER J-Link Debugger ¥1.71a (beta) 1o x|
Fie Edt Yew Debug Window Help
I -5
Name: - June_|Fie [AddressRange~|| 671 = col: columm rmumber & | Name [valus [«]
sys_exit 48 Retarget.c 20001084-2 672 * ri: font index (0 = 6x8, 1 = 16x24) 5 am curr, CPURegs

_trywrch a3 Retarget.c 20001048-2 673 : c: ascil characker RO 0:00000010

ADC_GetCrir 95 ADC.c 20000F4C- g;? LOEY R1 0300000009

ADC_Init 28 ADC.c 20000E40-2 676 RZ 0x00000001

ADC_StartCry 7 ADC.c 20000F28-2 677 woid GLCD_DisplayChar (unsigned int ln, unsigned int col, unsigned char f£i, w R3 0x00000030

ADC_StopCny 86 ADC.c 20000F34-2 678 R¢ 0x00000010

BusFaulk_Handler 176 startup_stm32fi0x_hd.s 20000152-Z :;i O izif 00 RS 000000004

switch (£1

BUT_Ink 37 Binkn.c 20001088-2 | I S [0x000000038

DebugMon_Handler 180 startup_stm32fi0x_hd.s 20000158-2 652 SLCD DrauChar{col * &, In * & 6, 8, (wsigned char *)<Font 6x5.h R7 0x00000001

Defaul_Handler 324 startup_stm32fi0x_hds 20000LSE-Z 583 break:] 0x00000000 =

delay 71 GLCD_{EGF_STM3Z.e 20000344-Z 684 case 1: /7 Font 16 x 24 */ Rro 0xFFFFFFFF

DMAL_Channell_TRQHandler 108 ADC.c 20000F62-2 ¢::é ELE‘;"“‘“U‘M("“ e e L v v e = e v T T R) RID 0% FFFFFFFF

ferror 37 Retarget.c 2000100-2 = reaks Ri1 000000008

faete 43 Bebarnet o 2ann1naR-7 T RiZ OXEOO0EDLS
o i = 688)

i 589 RI3 020008418
_Functions /_Source Files /\ Breakpoints / ot e s —— B
Global Data x 691

Nlame [value [Locaton [Tvre [=] ggg : D).;Ply string on given line L . Disassembly x
araueter: n: ine mumber GLCD DrawtChar (col * 18, In * 24, 16, 24, (urAl

CLERCTE D 2000000° ficonSERueHaE (Lol 694 col: column number 20000EE6 0044EE04 ADD RO, R4, R4,

dock_1s =0 2000802C uchar 695 * i font index (0 = 6x8, 1 = 16xZ4) 20000BEA 4960 LR RL, [BC, Ox

(= Color 20008014 volatile wshort[2] 596 * st pointer to string 20000BEC 1000EBOl ADD RO, RI, RO,

[0xFFFF 20008014 wolatile ushort 697 * Return: Z0000BFO 0245EB0S ALD R2, RS, RS,

()] 0xFE00 20008016 wolatile ushort 222 [ETII e L RL, Rz, §3

Z20000BF& 9000 STR RO, [SP, O

(@ Font_16:24 h 20001E74 |const ushort[2686] 700 woid GLCD_DisplayString funsigned int ln, msigned int col, unsigned char £i, 20000BF8 0130 L0 RO, R6, #4
Font_6x3_h 20001AF4 const uchar[896] eon CITETYy | Eg v o, sza

Himax 00 20008018 uchar 90z while (3] { ZO000BFC 2210 mv Rz, #16

ITM_RoBuffer OxSAASSAAS 20008030 wolatile int =»703 GLCD_DisplayChar(ln, coltt, £1, *s4h): ZOO0UBFE FFSEF7FF L 0x20000B1E
led_mask 20003374 const ulong[4] 04 3 break;

SystemCoreClock 0x44AA200 20008000 uint 7053 = 20000COZMMERO0 (HOE =l
o e e | Rl | ‘ |
Memary 1 @ 5860 % [Console x| Cal Stack x
00D0S8E0 B4 06 00 20 24 06 0D 20 2C 06 00 20 2C 06 00 20 ~|| pepug. stepmneoay & | Function [Line[Fike |
000058C0 34 06 0O 20 34 06 00 20 3C 06 00 20 3C 06 00 20 Debmg. StepInta(); =» BLCD_DisplayChar 685 GLCD_16bitIF_STM3Z.c
0000580 44 06 00 20 44 06 00 20 4C 06 00 20 4C 06 00 20 Debug. StepIntal); GLCD_Displays

. ; 4 703 GLCD_t6hitIF_STM3Z.
QODOSSED 54 06 00 20 54 06 00 20 5C 06 00 20 SC 06 00 20 Debug, StapInto() : == s -
000058F0 64 06 00 20 64 06 00 20 6C D6 00 20 6C 06 00 20 Debug. StepIntal) ; | main 145 Blnky.c
00005900 74 06 00 20 74 06 00 ZO0 7C 06 00 20 7C 06 00 20 Tishmirr SranTaralh ~|| @ 20001508
00005910 84 06 00 20 84 06 00 20 6C 06 00 20 8C 06 00 20 < | 4
00005520 94 06 00 20 94 D& 00 20 OC 06 00 20 SC 06 00 20 =
[CPUhalted

|'Lnest chzz | Connected

Figure 3.3. Main window hosting debug information windows

In its center, the Main Window hosts the source code document viewer, or Source
Viewer for short. The Source Viewer is surrounded by three content areas to the left,
right and on the bottom. In these areas, users may arrange debug information win-
dows as desired. The layout process is described in “Window Layout” on page 43. The
only window that cannot be undocked or repositioned is the Source Viewer itself.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

31

3.4 Menu Bar

| File Edit View Debug Window Help |

Ozone’s Main Window provides a menu bar that categorizes all user actions into five
functional groups (see the illustration above). It is possible to control the debugger
from the menu bar alone. The five menu groups are described below.

3.4.1 File Menu

The File Menu hosts actions that perform file system

i = : ” (= *
and related operations (see “File Actions” on
page 155). L] Open... ChrlH-C
New Save Project as... ChrHS
This submenu hosts actions to create a new o Save ZhrlShifE+S
project and to run the Project Wizard (see “Project
Wizard” on page 23). Recent Projects ¢
Open i Exi Alt+F4

Opens a project-, program-, data- or source-file
(see “File.Open” on page 160).

Save Project as

Opens a dialog that lets users save the current project to the file system.
Save All

Saves all modified workspace files.

Recent Projects

The "Recent Projects" submenu contains a list of recently used projects. When an
entry is selected, the associated project is opened.

Exit

Exits the application.

3.4.2 Edit Menu

The Edit Menu hosts three dialog actions that allow

users to edit Ozone’s graphical and behavioral set- A¥ Ilink Settings... Ctri+Al+]
tings (see “Edit Actions” on page 155). A Preferences... Chrl+alk+P
J-Link-Settings a Swstem Yariables. .. Chr a4y

Opens the J-Link-Settings Dialog that allows users
to specify the hardware setup, i.e. the MCU model
and debugging interface to be used (see “J-Link Settings Dialog” on page 51).

Preferences

Opens the User Preference Dialog that allows users to configure Ozone’s graphical
user interface (see “User Preference Dialog” on page 44).

System Variables

Opens the System Variable Editor that allows users to configure behavioral settings
of the debugger (see “System Variable Editor” on page 48).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

32

3'4'3 Vlew Menu |# | Breakpoints <+5hifk+B
The View Menu hosts actions that add debug infor- |“o| Call Graph Alt+shift+H
mation .Window_s and toolbars to the Main Window =1 Call Stack Alb+Shift+K
(see “View Actions” on page 156). _ _ _

|| Code Profile Alt+shift+P

Views (=] Console Alt+Shift+C
The Vlevy Men_u contains an entry for each debug & | Data Breakpoints Alb-HShift 2
information window. By clicking on an entry, the : _
corresponding window is added to the Main Win- fird Data Graph AlE+Shift+¥
dow at the last used position (see “Opening and | o | Disassembly Alk+Shift+D
Closing Windows™ on page 43). | Find Results Alt-+Shift+E
embOS A Functions Alt+5hift+F
If an RTOS-awareness-Plugin has been set using ||&| Global Data Ale+3Shift+3
action_ Project.SetOSPlugin, a syl_omenu is add_ed to =i Instruction Trace Bl ShifE4T
the View Menu that hosts additional debug infor- _ | S
mation windows provided by the RTOS-awareness- L} LocalData Al
Plugin (see “Project.SetOSPlugin” on page 183). [se Memoary Alt+5hift+14
Toolbars | #| Registers Alk+Shift+R.
This submenu hosts three checkable actions that L& | Source Files Alt-+Shift-+U
define whether the file-, debug- and help-toolbars 2= | Terminal Ale+shifk+T
are visible (see “Showing and Hiding Toolbars” on (W) Watched Data AlEShiFEi
page 34).

emb0s k

Toolbars *

3.4.4 Debug Menu

CHAPTER 3 Graphical User Interface

The Debug Menu hosts actions that control program
execution (see “Debug Actions” on page 157).

Start/Stop Debugging
- el) Stop Debugai Shift+F5

Starts the debug session, if it is not already started. = =R BERaans !
Stops the debug session otherwise. [Continue F5

] 3
Continue/Halt = Reset F4
Resumes program execution, if the program is % Step over F10
‘r?alted. 1I’-|alts program execution otherwise (see ? Step into F11
Resume” on page 120).

‘? Step out Shift+F11

Reset

Resets the program using the last employed reset

mode. Other reset modes can be executed from the

action’s sub menu (see “Reset” on page 119).

Step Over

Steps over the current source code line or machine instruction, depending on the
active code window (see “Active Code Window” on page 37 and “Step” on page 119).
Step Into

Steps into the current subroutine or performs a single instruction step, depending on
the active code window (see “Active Code Window” on page 37 and “Step” on
page 119).

Step Out

Steps out of the current subroutine (see “Step” on page 119).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

33

3.4.5 Window Menu

Disassembl
The Window Menu lists the debug information windows currently L_ | Dat i
open. By selecting an entry, the corresponding window is brought into -':":E_' aka
view. The window that contains input focus is indicated by a check v Registers
mark. Terminal

3.4.6 Help Menu T ———

The Help Menu hosts the debugger’s user manual, g Commands Shift-+F1
command help and About Dialog (see “Help Actions”
on page 157) About Ozone. .,

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 3 Graphical User Interface

3.5 Toolbars

Three of Ozone’s Main Menu groups — File, Debug and View — have affiliated toolbars
that can be docked to the Main Window or positioned freely on the desktop (see the
illustration below). In addition, a breakpoint toolbar is provided.

|) g File Toolbar

” U R~ Debug Toolbar

JJ.L.._».E._.M._..-_..&E_T.__.L\..&._L.&.L&&@ View Toolbar

” ® w & Breakpoint Toolbar

Figure 3.4. Menu toolbars

3.5.1 Showing and Hiding Toolbars

Individual toolbars can be added to the Main Window via the toolbars menu

(View® Toolbars) or by executing the user action Toolbar.Show using the toolbar’s
name as parameter (e.g. Toolbar.Show("Debug")). Removing toolbars from the Main
Window works identically using action Toolbar.Close. Please see page 170 for further
information on these actions.

3.5.2 Arranging Toolbars

Toolbars can be arranged either next to each other or above each other within the
toolbar area as desired. To reposition a toolbar, pick the toolbars handle and drag it
to the desired position.

3.5.3 Docking and Undocking Toolbars

Toolbars can be undocked from the toolbar area and positioned anywhere on the
desktop. To undock a toolbar, pick the toolbar’s handle and drag it outside the toolbar
area. To hide an undocked toolbar, follow the instructions of section 3.5.1.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

35

3.6 Status Bar

Ozone’s status bar displays information about the debugger’s current state. The sta-
tus bar is divided into three sections (from left to right):

e Status message and progress bar
e Window context information
e Connection state

“Wrin‘ng Memory... HENIRRRRRENNNNNNNNND | Ln33 ch 1 | Connected @ 100 kHz

Figure 3.5. Status bar

3.6.1 Status Message

On the left side of the status bar, the status message is displayed. The status mes-
sage informs about the following objects, depending on the situation:

Program State

By default, the status message informs about the program state, e.g. "Program run-
ning".

Operation Status

When the debugger performs a lengthy operation, the status message displays the
name of the operation. In addition, a progress bar is displayed that indicates the
progress of the operation.

Context Help

When hovering the mouse cursor over a user interface element, the status message
displays a short description of the element.

3.6.2 Window Context Information

The middle section of the status bar displays information about the active debug
information window.

3.6.3 Connection State

The right section of the status bar informs about the debugger’s J-Link connection
state. When the debugger is connected to the MCU, the data transmission speed is
displayed as well.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 3 Graphical User Interface

3.7 Debug Information Windows

Ozone features a set of 18 debug information windows that cover different functional
areas of the debugger. This section describes the common features shared by all
debug information windows. An individual description of each debug information win-
dow is given in “Debug Information Windows” on page 61.

3.7.1 Context Menu

Each debug information window owns a context menu

that provides access to the window’s options. The con- |C IR Shift-+S

text menu is opened by right-clicking on the window. 3] Wiew Disassembly Shift+C:
3.7.2 Display Format

Several debug information windows allow 000000000

users to change the value display format of a

; : . BBl Display As Binary
particular (or all) items hosted by the window. 0xEl Display All s * _
If supported, the value display format can be BT AR v Hexadscimal

; ; , . o0 STOTI00
changed via the window’s context menu or via 0200000000 Decirnal
the wuser actions Window.SetDisplayFormat *

0x00000000 Character

(see page 168) and Edit.DisplayFormat (see
page 166).

3.7.3 Change Level Highlighting

The following debug information windows employ change level
highlighting (see “Change Level Highlighting” on page 29):

[aETinintnintnininlyl

Yalue
- Registers fed
e Memory 0x10
e Local Data 020
e Global Data 0x20005041

e Watched Data

3.7.4 Code Windows

Ozone includes two debug information windows that display the program’s source
code and assembly code, respectively. The code windows share several common
properties that are described in “Code Windows” on page 37.

3.7.5 Table Windows

Several of Ozone’s debug information windows are based on a joint table layout that
provides a common set of features. A shared description of the table-based debug
information windows is given in “Table Windows” on page 41.

3.7.6 Window Layout

Section “Window Layout” on page 43 describes how debug information windows are
added to, removed from and arranged on the Main Window.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

37

3.8 Code Windows

Ozone includes two debug information windows that display program code: the
Source Viewer and the Disassembly Window. These windows display the program'’s
source code and assembly code, respectively. Both windows share multiple properties
which are described below. For an individual description of each window, please refer
to “Source Viewer” on page 62 and “Disassembly Window” on page 66.

3.8.1 Program Counter Tracking

Ozone’s code windows automatically scroll to the position of the PC line when the
user steps or halts the program. In case of the Source Viewer, the document contain-
ing the PC line is automatically opened if required.

3.8.2 Active Code Window

At any point in time, either the Source Viewer or the Disassembly Window is the
active code window. The active code window determines the debugger’s stepping
behavior, i.e. weather the program is stepped per source code line or per machine
instruction.

3.8.2.1 Recognizing the Active Code Window

The active code window can be distinguished from the inactive code window by a
higher color saturation level of the PC line (see the illustration below).

I,'(Eilink':.f.c x\'.\ w |Disassembly »
]y «|| z00011ZE 4080F440 ORE: RO, [&
£l Main Program Z0001132 G005 STR RO, [
B2 F oo] 4| =zooo1l134 4770 Ex LE

= 63 int main (woid) ! =+Z00011356 BSOS PIISH fR3,1
64 uint3Z_t ad_avg = 0; 2000llss 2700 Mo R7, 4
65 uintls £ ad wal = 0, ad val = O 20001134 2600 Mav Ra&, 4
56 int3z_t joy =0, joy_ = -y 2000113C 78FFF&4F MOV Rg, séll
57 (4] | _>|_I K1 o

Figure 3.6. Source Viewer (inactive, left) and Disassembly Window (active, right)

3.8.2.2 Switching the Active Code Window

A switch to the active code window occurs either manually or automatically.

Manual Switch

A manual switch of the active code window can be performed by clicking on one of
the code windows. The selected window will become active while the other code win-
dow will become inactive.

Automatic Switch to the Disassembly Window

When the user steps or halts the program and the PC is not affiliated with a source
code line via the program’s address mapping table, the debugger will automatically
switch to the Disassembly Window. The user can hereupon continue stepping the
program on a machine instruction level.

Automatic Switch to the Source Viewer

When the program was reset and the PC is affiliated with a source code line, the
debugger will switch to the Source Viewer as its active code window.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 3 Graphical User Interface

3.8.3 Sidebar

Each code window hosts a sidebar on its left side. The sidebar displays icons that
provide additional information about code lines. Breakpoints can be toggled by click-
ing on the sidebar. If desired, the sidebar can be hidden.

3.8.3.1 Showing an Hiding the Sidebar

The display of the sidebar can be toggled from the User Preference Dialog (see “User
Preference Dialog” on page 44) or via the user action Edit.Preference (see “Edit.Pref-
erence” on page 165).

3.8.3.2 Sidebar Icons

The following table gives an overview of the sidebar icons and their meanings:

Icon | Meaning

The code line does not contain executable code.

The code line contains executable code.
A breakpoint is set on the code line.

The code line contains the PC instruction and will be executed next.

The code line contains a call site of a function on the call stack.

The code line contains the PC instruction and a breakpoint is set on the line.

o ¢ dde

The code line contains a call site and a breakpoint is set on the line.

Table 3.7. Sidebar Icons

3.8.3.3 Showing and Hiding the Sidebar

The display of the sidebar can be toggled from the User Preference Dialog (see “User
Preference Dialog” on page 44) or via the user action Edit.Preference (see “Edit.Pref-
erence” on page 165).

3.8.4 Code Line Highlighting

Each code window applies distinct highlights to particular code lines. Table 3.8
explains the meaning of each highlight. Code line highlighting colors can be adjusted
via the User Preference Dialog (see “User Preference Dialog” on page 44) or via the
user action Edit.Color (see “Edit.Color” on page 166).

Highlight Meaning

for (inti =0) { The code line contains the program execution point (PC).
Function(x,y); The code line contains the call site of a function on the call stack.
for (inti =0) { The code line is the selected line.

The code line contains the instruction that is currently selected
for (inti =0) { within the Instruction Trace Window (See “Backtrace Highlighting”
on page 101).

Table 3.8. Code Line Highlights

3.8.4.1 Call-Site Highlighting Requirement

Call site highlighting will only take place when the Call Stack Window is open, i.e.
floating or docked to the Main Window.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

39

3.8.5 Breakpoints

Ozone’s code windows provide multiple options to set, clear, enable, disable and edit
breakpoints. The different options are described below.

3.8.5.1 Toggling Breakpoints

Table 3.9 gives an overview of the options that both code windows provide to set or
clear breakpoints on the selected code line.

Method Set Clear

Context Menu Menu Item "Set Breakpoint" Menu Item "Clear Breakpoint”
Hotkey Fo F9

Sidebar Single-Click Single-Click

Table 3.9. Alternative ways of toggling breakpoints on code lines

Breakpoints on arbitrary addresses and code lines can be toggled using the actions
Break.Set, Break.SetOnSrc, Break.Clear and Break.ClearOnSrc (see “Breakpoint
Actions” on page 158).

3.8.5.2 Enabling and Disabling Breakpoints

The code windows allow users to disable and enable the breakpoint on the selected
code line by pressing the hotkey Shift-F9. Breakpoints on arbitrary addresses and
code lines can be enabled and disabled using actions Break.Enable, Break.Disable,
Break.EnableOnSrc and Break.DisableOnSrc (see “Breakpoint Actions” on page 158).

3.8.5.3 Editing Advanced Breakpoint Properties

Advanced breakpoint properties, such as the trigger condition or implementation
type, can be edited via the Breakpoint Properties Dialog (see “Breakpoint Properties
Dialog” on page 50) or programatically via the user actions Break.Edit (see
“Break.Edit” on page 198) and Break.SetType (see “Break.SetType” on page 196).

3.8.6 Code Profile Information

The code windows are able to display code profile information within their sidebar
areas.

3.8.6.1 Hardware Requirements

The code profile features of Ozone require the employed hardware setup to support
instruction tracing (see “Hardware Requirements” on page 69). The user experience
can be enhanced by employing a J-Trace PRO debug probe (see “Streaming Trace” on
page 126).

3.8.6.2 Execution Counters

When code profiling features are suppo_rted by 2637 95 [str r3, [r2], #4
the hardware setup, the code windows display a 97
counter next to each text line that contains exe- a8 LoopFillZerohss:
cutable code. The counter indicates how often 2638 9% [1dr r3, = _ehss
the source code line or instruction was executed. 2638 100 cmp rZ, r3

Z 638 0000208 42
The execution counters are reset at the same 2638 101 5] bec FillZerohss
time the program is reset. The code window con- zesls _ |osoonson Do

text menu provides actions to reset and toggle
the display of execution counters as well.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 3 Graphical User Interface

3.8.6.3 Execution Profile Tooltips

When hovering the sidebar area next to exe- .) Profile f

- - - - Xeoutlon ¥Yaorile or
cm_JtabIe code, an execution profile tooltip is SECOER BTT. o- 276
displayed. -

Fetched: 5409 641

FetChed Executed: L4059 5641 (100.0%)
Number of times the instruction was fetched Not-Executed: 0 (0_0%)
from memory. Load: 1.3%
Executed

Number of times the instruction was executed. A conditional instruction may not be
executed after having been fetched from memory.

Not-Executed
Number of times the instruction was fetched from memory but not executed.

Load

Number of times the instruction was fetched divided by the total amount of instruc-
tions fetched during program execution.

Please note that the execution profile of source code lines is identical to the execu-
tion profile of the first machine instruction affiliated with the source code line.

3.8.6.4 Code Profile Highlighting Colors

The code windows employ different highlighting colors in conjunction with code pro-
file information. The default colors and their meanings are shown below.

Line has been executed.
Line has been partially executed.
Line has not been executed.
These default colors can be adjusted via the User Preference Dialog (see “User Pref-

erence Dialog” on page 44) or programatically via user action Edit.Color (see
“Edit.Color” on page 166).

3.8.6.5 Executed Line

All instructions of the line have been executed and all conditions have been met and
not met.

3.8.6.6 Partially Executed Line

Not all instructions of the line have been executed or conditions are only partially
met.

3.8.6.7 Not Executed Line

No instruction of the line has been fetched from memory or executed.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

41

3.9 Table Windows

Several of Ozone’s debug information windows are based on a joint table layout that
provides a common set of features. The Breakpoint Window illustrated below is an
example of a table-based debug information window (or table window for short).

E
Address S on Conkexk Line | File: |
Ogo000408 O int Count = 0O; 53 Main.c
08000416 LDE RS, [PC, #+0x1C]
E <inlined- *pZ = o} a7 Main.c
0s000356 _Inline3wapi&a, &b): 35 Main.c
0a0o003nc _Inlinedwap(sh, &a): 39 Main.c

Figure 3.10. Table window

3.9.1 List of Table Windows

The following debug information windows are table-based:

e Breakpoints

e Data Breakpoints
e Functions

e Call stack

e Global Data

e Local Data

e Watched Data
e Data Graph

e Call Graph

e Code Profile

e Registers

e Source Files

3.9.2 Selectable Table Columns

Each table column has a checkable entry in the context menu of the v Mame
table header. When an entry is checked or unchecked, the correspond- o Valle
ing table column is shown or hidden. The table header context menu
can be opened by right-clicking on the table header.

3.9.3 Sortable Table Rows

Table rows can be sorted according to the values displayed in a particular column. To
sort a table according to a particular column, a left click on the column header suf-
fices. A sort indicator in the form of a small arrow indicates the column according to
which the table is currently sorted. The sort strategy depends on the data type of the
column.

3.9.4 Editable Table Cells

Certain table cells such as variable values are editable. When a value that is stored in
MCU hardware is edited, a data readback is performed. This mechanism ensures that
the displayed value is always synchronized with the hardware state.

v Location

v Tvpe

3.9.5 Letter Key Navigation

By repeatedly pressing a letter key within a table window, the table rows that start
with the given letter are scrolled into view one after the other.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 3

3.9.6 Tree Structure

Graphical User Interface

)]] =l pCurrentTask
A table row that displays a button on its left side can be
) . . = [0]
expanded to reveal its child rows. A table window where o phext
multiple rows have been expanded attains a tree structure P
as illustrated in the picture to the right. 0]
pakack
3.9.7 Filter Bar
Each table window prowd_es a filter Narme Lacation |SiZE |TWIE
bar that allows users to filter table " "
contents. When column filters are b 48 :
set, only table rows that match _BaseAddr 2000 0624 | 4 uinte
each of the added column filters O5_ILINKMEM Buffe 0800 322C 4 const uint

stay visible. Columns that display

numerical data accept single value and value range filter input. A value range filter is
specified using the dash character as separator (for ex. 4-8, compare with the illus-
tration above). The display of the filter bar can be toggled via the context menu.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

43

3.10 Window Layout

This section describes how debug information windows can be added to, removed
from and arranged on the Main Window.

3.10.1 Opening and Closing Windows

Opening Windows

Windows are opened by clicking on the affiliated view menu item (e.g. View¥ Break-
points) or by executing the command Window.Show using the window’s name as
parameter (e.g. Window.Show("Breakpoints")). When a window is opened, it is
added to its last known position on the user interface.

Closing Windows Programmatically

Windows can be closed programatically via the user action Window.Close using the
window’s name as parameter.

3.10.2 Undocking Windows

Windows can be undocked from the main window by dragging or double-clicking the
window's title bar. An undocked window can be freely positioned and resized on the
desktop.

®_C:/Examples/Blinky_STM32F =10] %]
File Edit Miew Debug Help
|G P~ &t
El
Call Stack. 20001122 4070F420 EIC RO, RO, #0x]4]
Funiction | Line | File 20001126 4902 LDR Rl, [PC, Ox
e 63 Blnky.c 20001128 600G 5TE. RO, [R1] J
GPIOD->CREL |= 0x00004000;
B 20001508 20001124 4608 MoV RO, R1L
Z0001l12C 6800 LDE. RO, [ROJ
Z000L12E 4080F440 0EE. E0, RO, #0x:
20001132 6003 STE. RO, [R1]
}
[CPU halked 20001134 4770 B LE
int main (woid) { ;I
il i

Figure 3.11. Undocked Disassembly Window floating over the Main Window

3.10.3 Docking and Stacking Windows

Windows can be docked on the left, right or bottom side of the main window by drag-
ging and dropping the window at the desired position. If a window is dragged and
dropped over another window the windows are stacked. More than two windows can
be stacked above each other.

Furnckion Line | File
= main a3 Blinky . c
[200015D&

I'lk Call Stack, j"ll_ Instruction Trace /' Disassembly [/
| CPU halked | ln1 ch1 | Connected

Figure 3.12. Stacked debug information windows

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 3 Graphical User Interface

3.11 Dialogs

This section describes the different dialogs that are employed within Ozone.

3.11.1 User Preference Dialog

The User Preference Dialog provides multiple options that allow users to customize
the graphical user interface of Ozone. In particular, fonts, colors and toggleable items
such as line numbers and sidebars can be customized.

x|

E} 2oy General

- |C) Source Wiewer

- 4| Disassermbly Window
= 22| Terminal Window
<L Table Windows
- @ Appearance

|| Application

- |C) Source Wiewer

- 4| Disassermbly Window

=+ || Table Windows Cansole Text (Errar) j -

Appearance -= Application

M5 Shell Dlg 2, 8pt, Mormal | *'II

Colors

K Cancel |

Figure 3.13. User Preference Dialog

3.11.1.1 Opening the User Preference Dialog

The User Preference Dialog can be opened from the Main Menu (Edit® Preferences) or
by executing the user action Edit.Preferences (see “Edit.Preferences” on page 164).

3.11.1.2 Dialog Components

Page Navigator

The Page Navigator on the left side of the User Preference Dialog displays the avail-
able settings pages grouped into two categories: general and appearance. Each set-
tings page applies to a single or multiple debug information windows, as indicated by
the page name.

Settings Pane

The Settings Pane on the right side of the User Preference Dialog displays the set-
tings associated with the selected page.

3.11.1.3 General Application Settings

This settings page lets users adjust general
application settings.

General ->= Application

Open the most recent Project on Startup Options

Specifies if the most recent project should be [T Spen the mast recent project on starkup
opened when the debugger is started instead . .
of displaying the Welcome Dialog. I Show progress bar while runing

¥ show dialog option "Do ok show again”

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

45

Show progress bar while running

Indicates if a moving progress bar should be animated within Ozone’s status bar area
while the program is executing.

Show dialog option “"Do not show again”

Indicates if popup-dialogs should contain a checkbox that allows users to stop the
dialog from popping up.

3.11.1.4 Source Viewer Settings

. . i General ->= Source Wiewer
This settings page lets users adjust gen-
eral display options of the Source Viewer.
Show Line Numbers Cptions
Specifies if the Source Viewer displays W Show Line Murmbers
source code line numbers (see “Source [V Shaw Sidshar
Line Numbers” on page 63).
Show Sidebar v Show Line Expansion Bar
Specifies if the Source Viewer displays a [Show Code Profile
sidebar. ¥ Lock Header Bar
Show Line Expansion Bar ¥ Indent inline assembly code
Specifies if the Source Viewer displays
line expansion indicators next to source ITaI:u Spacing j |2 j
code lines.
Show Code Profile

Specifies if code profile information should be displayed within the sidebar area of
the Source Viewer (See “Execution Counters” on page 39).

Lock Header Bar

Specifies if the Source-Viewer’s header bar should be visible at all times or only when
hovered with the mouse.

Tab Spacing

Sets the number of whitespaces drawn for each tabulator in source text.

3.11.1.5 Disassembly Window Settings

This settings page lets users adjust general display

options of the Disassembly Window. General -> Disassembly Window
Show Source
Specifies if assembly code should be augmented with pkions

source code text to improve readability (see “Mixed

Mode” on page 66). W Show Source

Show Labels ¥ show Labels

Specifies if assembly code should be augmented with v show Sidebar

labels to improve readability (see “Mixed Mode” on |7§§HEiE'IEEHEFFEFi'IEE

page 66). L

Show Sidebar

Specifies if the Disassembly Window displays a sidebar (see “Sidebar” on page 38).
Show Code Profile

Specifies if code profile information should be displayed within the sidebar area of
the Disassembly Window (See “Execution Counters” on page 39).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 3 Graphical User Interface

3.11.1.6 Function Window Settings

This settings page lets users adjust general
display options of the Functions Window.

General -= Functions Window
Prepend Class Names to Func Names

Specifies if the class name of a member func-
tion should be preceding the function name
itself (see “User Preference Identifiers” on v {Prepend class names o Function names :
page 148).

Opkions

3.11.1.7 Terminal Window Settings

This settings page lets users adjust general display

options of the Terminal Window. General - Terrminal Window

Suppress Control Characters

Specifies if non-printable and control characters are Options
filtered from 10 data prior to terminal output (see
“User Preference Identifiers” on page 148). IV suppress Control Characters

3.11.1.8 Table Windows Settings

This settings page lets users adjust general display
options of the Table Windows (see “Table Windows” on
page 36).

General -= Table Windows

Show Character Walue
Show Character Value

The provided options allow users to specify which values
are displayed in character representation next to the

v (unsigned) char
[funsigned) short

number representation. By checking a data type’s [(unsigned) int
option, all symbols of this data type display their value _ N
in the format "number (character)" instead of just I (unsigned) char
"number”. [T funsigned) short*

[~ {unsigned) int*

3.11.1.9 Appearance Settings

On the appearance settings pages,
fonts and colors of a particular win- fppearance -> Application
dow or window group can be
adjusted. Within the window group
"Application”, the default appear- Faonts
ance settings for all windows and
dialogs can be specified.

| M5 ShellDig 2, &pt, Mormal .. | |

Fonts .
olors
Lets users adjust individual fonts of
the window or window group. Console Text (Error) j -
Colors

Lets users adjust individual colors
of the window or window group.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

47

3.11.1.10 Specifying User Preferences Programmatically

Each setting provided by the User Preference Dialog is affiliated with an user action.
User preference actions allow users to change the preference from a script function
or at the command prompt. Table 3.14 gives an overview of the user preference
actions (see “Edit Actions” on page 164).

Settings Category Affiliated User Action(s)
General Settings Edit.Preference
Appearance Settings Edit.Color and Edit.Font

Table 3.14. User preference actions

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 3 Graphical User Interface

3.11.2 System Variable Editor

Ozone defines a set of 15 system variables that control behavioral aspects of the
debugger. The System Variable Editor lets users observe and edit these variables in a
tabular fashion.

x

Marne < I Yalue I Descripkion I;

WoR_ACCESS WIDTH Auto Access * Memory Access wWidth

WaR_COMMECT _MODE Download & Reset Program * Conneckion Made

WAR_HW_RESET_DELAY auto Hardware Feset Delay in ms

WoR_HwW_RESET_MODE Auto Reset Mode * Hardware Reset Mode

VAR _RESET_INIT_REGS YES * Init Reqgisters on Reset

WoR_RESET_MODE Reset & Break at Main * Reset Mode B

WaR_RTT_EMABLED no * Enable | Disable Real Time Terminal I

WaAR_SEMIHOSTIMG_EMABLED o * Enable [Disable Semibosting IO

S — e cutr 1 e =l

Figure 3.15. System Variable Editor

3.11.2.1 Opening the System Variable Editor

The System Variable Editor can be opened from the Main Menu (Edit® System Vari-
ables) or by executing the user action Edit.SysVars (see “Edit.SysVar” on page 165).

3.11.2.2 Editing System Variables Programmatically

The user action Edit.SysVar is provided to manipulate system variables from script
functions or at the command prompt (see “Command Prompt” on page 75).

3.11.2.3 Applying Changes

In general, changes to system variables are not applied immediately upon closing the
System Variable Editor. Instead, the debug session must be restarted for new set-
tings to take effect. There are exceptions to this rule: the target interface speed
parameter, for example, is applied immediately.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

Ozone User Guide (UM08025)

3.11.3 Data Breakpoint Dialog

The Data Breakpoint Dialog allows users
to place data breakpoints on global pro-
gram variables and individual memory
addresses. The dialog can be accessed
from the context menu of the Data Break-
point Window (see “Data Breakpoint Win-
dow” on page 83).

Data Location

The data location pane allows users to
specify the memory address(es) to be
monitored for 10 accesses. When the
"From Symbol" field is checked, the mem-
ory address is adapted from the data loca-
tion of a global variable. Otherwise, the
memory addresses need to be specified
manually. Please refer to “Data Break-
points” on page 122 for further informa-
tion.

Access Condition

The access condition pane allows users to
specify the type and size of a memory
access that triggers the data breakpoint.
Please refer to “Data Breakpoints” on
page 122 for further information.

Value Condition

Ml Set Data Breakpoint

49

—Data Location

{~ From Symbal

I Address; 1]

I Mask: i

—Access Condition

I'-.-'-.-'rite Cnily j
ACcess Size:
IByte ;I

—Walue Condition

[Ignored

I Wale: 100

[1ask: 0xFFFFFFFF =l
Ok Cancel |

The value condition pane allows users to specify the 10-value required to trigger the
data breakpoint. The value condition can be disabled by checking the "lgnored" field.
Please refer to “Data Breakpoints” on page 122 for further information.

OK Button

By pressing the OK button, a data breakpoint with the specified attributes is set in
MCU hardware and added to the Data Breakpoint Window. In case the debugger is
disconnected from the MCU, the data breakpoint is added to the Data Breakpoint
Window and scheduled to be set in MCU hardware when the debug session is started.

Cancel Button

Closes the dialog without setting the data breakpoint.

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

50

CHAPTER 3 Graphical User Interface

3.11.4 Breakpoint Properties Dialog

The Breakpoint Properties Dialog allows

users to edit advanced breakpoint properties “ Breakpoint Properties X|
such as the trigger condition and the imple- Infa
mentation type. The dialog can be accessed
via the context menu of the Source Viewer, ID: o
Disassembly Window or Breakpoint Window. Location: main.c: 211
Advanced breakpoint properties can also be
set programmatically using actions o Pl
Break.Edit (see “Break.Edit” on page 198) ¥ Enabled |F'-n~..f |
and Break.SetType (see “Break.SetType” on
page 196). —Skip # —Task,
State II:I Inl:une ;I
Enables or disables the breakpoint.
—Condition
pe | 3
Sets Ehe breakpoint’§ implementation type
(see "Break.SetType” on page 196). f*' Trigger when true " Trigger when ...
Skip Count S—
Program execution can only halt each Skip- 7 Exdra Actions:
Count+1 amount of times the breakpoint is B ik Tt T I—
hit. Furthermore, the remaining trigger con-
ditions must be met in order for program [Display Messags Box: |

execution to halt at the breakpoint.

Task

Specifies the RTOS task that must be run-
ning in order for the breakpoint to be triggered. The RTOS task that triggers the
breakpoint can be specified either via its name or via its ID. When the field is left
empty, the breakpoint is task-insensitive.

(0] 4 Cancel |

Condition

An integer-type or boolean-type C-language-expression that must be met in order for
program execution to halt at the breakpoint. When option "Trigger when true" is
selected, the expression must evaluate to a non-zero value in order for the break-
point to be triggered. When option "Trigger when changed" is selected, the break-
point is triggered each time the expression value changed since the last time the
breakpoint was encountered.

Skip Count

Program execution can only halt each SkipCount+1 amount of times the breakpoint is
encountered. In addition, the remaining trigger conditions must be met in order for
program execution to halt at the breakpoint.

Task Filter

Specifies the RTOS task that must be running in order for the breakpoint to be trig-
gered. The RTOS task that triggers the breakpoint can be specified either via its
name or via its ID. When the field is left empty, the breakpoint is task-insensitive.

Extra Actions

Specifies the additional actions that are performed when the MCU is halted at the
breakpoint. The provided options are a text message that is printed to the Console
Window or a message that is displayed within a popup dialog.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

51

3.11.5 J-Link Settings Dialog

The J-Link-Settings-Dialog allows users to configure J-Link related settings, such as
the MCU model and the debugging interface. Please refer to “Project Wizard” on
page 23 for further details on these settings.

JI-Link Settings x|

J-Link:,

Madel: I-Trace Corkex-M Fesw.3
Serial-to: 1

API Version: 6,100

Target Device

| sTM3zZF407IG

Target Inketface

| SWD: 2 MHz

Host Interface

fuse

_I_I_L

Cancel

3.11.5.1 Opening the J-Link Settings Dialog

The J-Link Settings Dialog can be opened from the Main Menu (Edit® J-Link Settings)
or by executing the user action Edit.JLinkSettings (see “Edit.JLinkSettings” on
page 164).

3.11.5.2 Applying Changes

Settings modified via the J-Link settings dialog do not take effect immediately upon
accepting the dialog. Instead, the debug session must be restarted for new settings
to take effect. The only exception to this rule is the target interface speed parame-
ter; provided that the debugger is connected to the MCU, this parameter will be
applied on-the-fly.

When the J-Link settings dialog is accepted, the user is asked if the modified settings
should be written to the project file.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

52 CHAPTER 3 Graphical User Interface

3.11.6 Generic Memory Dialog

The Generic Memory Dialog is a multi-functional dialog that is used to:

e Dump MCU memory data to a binary file
e Download data from a binary file to MCU memory
< Fill a memory area with a specific value

All values entered into the Generic Memory Dialog are interpreted as hexadecimal
numbers, even when not prefixed with "0x".

3.11.6.1 Save Memory Data

In its first application, the Generic Memory =
Dialog is used to save MCU memory data to a X

binary file.
y IFiIe: _I
File
The destination binary file (*.bin) into which |Adiressi 2000030
memory data should be stored. By clicking on |5ize: 140

the dotted button, a file dialog is displayed
that lets users select the destination file.

Address

The address of the first byte stored to the
destination file.

Save Cancel

Size
The number of bytes stored to the destination file.

3.11.6.2 Load Memory Data

In its second application, the Generic Memory B
Dialog is used to write data from a binary file x|
to MCU memory.
. y IFiIe: _I
File
The binary file (*.bin) whose contents are to IAddrESS: ZH000Ed
be written to MCU memory. By clicking on the |5i23: 140
dotted button, a file dialog is displayed that
lets users choose the data file. Load Cancel
Address
The download address, i.e. the memory
address that should store the first byte of the data content.
Size
The number of bytes that should be written to MCU memory starting at the download
address.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

53

3.11.6.3 Fill Memory

In its third application, the Generic Memory =
Dialog is used to fill a memory area with a x|
specific value.
I Fill walue:]
Fill Value
The fill value | address: 2000030
Address | size: 140
The start address of the memory area. Fil Cancel
Size
The size of the memory area.
3.11.7 Find Dialog
The Find Dialog allows users to search for text m x|
patterns within source code documents.
. { Find
Find What
Defines the search pattern. The search pattern sl e
is either a plain text string or a regular expres- || j
sion, depending on the type of the search (see Laok in:
Use Regular Expressions"). ICurrent —— j
Look In
Specifies the search location. The search loca- I=!' Find Cptions
tion defines the source code documents that
are to be included in the search (see section [Match Case
3.11.7.1). ™ Match Whaole Waord
Match Case ™ Use Regular Expressions
Specifies if a substring is considered a match Bl Bl G
only when its letter casing corresponds to that Sl RS
of the search string. ¥ Show Filepaths
Match Whole Word
Specifies if a substring is considered a match Find Mexk Find All |
only when it constitutes a single word and is
not a substring of another word. close |
Use Regular Expressions

Indicates if the search string is interpreted as a

regular expression (checked) or as plain text (unchecked). In the first case, the
search is conducted on the basis of a regular expression pattern match. In the latter
case, the search is conducted on the basis of a substring match.

Show Filepaths

Indicates if the file path of matching locations should be included in the search
result. The search result are displayed within the Find Results Window.

Find Next

Finds the next occurrence of the search pattern in the selected source code docu-
ments. When a match is found, it is highlighted within the Source Viewer.

Find All

Finds all occurrences of the search pattern in the selected source code documents.
The search result is printed to the Find Results Window.

Close
Closes the dialog.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER 3 Graphical User Interface

3.11.7.1 Search Locations

Text search can be conducted in three individual locations. The desired search loca-
tion can be specified via the "Look In" selection box of the Find Dialog.

Search Location Description

Current Document The search is conducted within the active document.

The search is conducted within all documents that are open
within the Source Viewer.

The search is conducted within all source files used to compile
the application program.

All Open Documents

Current Project

Table 3.16. Search locations

3.11.8 Disassembly Export Dialog

The Disassembly Export Dialog is provided to save the disassembly of arbitrary mem-
ory address ranges, including source code and symbol information, to CSV
files.

= Export Disassembly Data ll

—Enkiky

" all Pragrarm Funckions
f+ Particular Funckion

™ Address Range

—Funckion
I main j

—Outpuk File

I C:fUserstanvbody) Ozone_Disassembly.csy o |

s Zancel |

Entity
Specifies the set of memory address ranges to be covered by the output file.

Function / Address Range
Selects the function or address range to be covered by the output file.

Output File
Output file.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

3.11.8.1

bly Export Dialog.

Exemplary Output

Figure 2.17 shows the contents of a CSV file that was generated using the Disassem-

Address |Encoding
8001340 |B480
8001342 |BO33
g001344 AFOO
001346 4821
5001348 BOVE
05001344 BE7E
Og00134c 2202
O0800134E B11A
89001350 |BS7E
001352 2202

Length Type Opcode
2 THUKME PUSH
2 THUKME SUB
2 THUMEB ADD
2 THUME LDR
2 THUME | STR
2 THUME LDR
2 THUWME MO
2 THUKME | 5TR
2 THUKME LDR
2 THUKME MOY

Label
_Dalnit

Cperands
(R7)

SP, 5P, #12
R7, 5P, #]
R3, [0x030013CE] |t
R3, [R7, #+Hx04]

R3, [R7, #+Hx04]

R2, #

R2, [R3, #+0x10]

R3, [R7, #+0x04]

R2, #

Source
static woid |

p=& SEC

p-=Mhdaxun

p-=MaxMur

Figure 3.17. CSV content generated by the Disassembly Export Dialog.

3.11.9 Code Profile Report Dialog

The Code Profile Report Dialog is provided to save the application’s code profile to a

text or a CSV file (see “Code Profile Window” on page 72).

.- Create Code Profile Repork

x|

—Repork Scope
" Whaole Application
" Selected Modules

¥ Selected Functions

=[O » BSRc
(] F ETH_IRGHandler
O F oTa_Fs_IrgHandler
0 F oTa_H5_IRGHandler
| DLib_Product_string.h

fa Main_RTT_PrintfTest.c

1004

P i P,

—oukput Formak —C5Y Farmat
™~ Report

fo 5y

™~ Functions

.................................

" Instructions

—Oukput File

Cii0zone_CP_170621 .csv

o

Ik

Cancel |

Figure 3.18. Code Profile Export Dialog.

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

56

CHAPTER 3 Graphical User Interface

Report Scope

Program scope to be covered by the output file.

Tree View

Allows users to define the report scope by selecting the files and functions to be cov-
ered by the output file.

Output Format

Output file format. The default option "Report" generates a human-readable text file.
The alternate option "CSV" generates a comma-separated values file that can be
used with table-processing software such as excel.

CSV Format

Available when output file format is "CSV". Specifies which program entities within
the selected report scope are to be exported. For example, if the report scope con-
tains a single file and the selected CSV format is "Instructions”, then a code profile
report about all instructions within the selected file is generated.

Output File
Output file path.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

57

3.11.9.1 Code Profile Report

Figure 2.21 shows the contents of a text file generated by the Code Profile Report
Dialog.

Ozone Code Profile Report

Project: C:/Exanples/Board 656 _3TH3ZF407IG_emb03 Fercepio
Application: C:/Exanples/Board 656 _3TH3ZF407IG_emb03 Fercepio
Date: 23 Now 20la

Code Coverage SULmMAry

Instructions

I
+
core_cmd.h I
NVIC SetPriority |
FysTick_Config |
Main.c |
main |

___________________ +
I

67 J/ 106 63.2%

Module /Function | Furi Count | Load
___________________ +_______________+__________________________
core_cmd.h I I
NWIC SetPriority | Z I 43
SvsTick_Config | 1 I ZB
Main.c | I
main | 1 | 20
___________________ +_______________+__________________________
Total I 4 I 04

Figure 3.19. Code Profile Report Example

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

58

CHAPTER 3 Graphical User Interface

3.11.10 Trace Settings Dialog

The Trace Settings Dialog allows user to configure the available trace data channels.

Trace Configuration EI

—Trace Source

—Trace Port Width

|4 Bit

L]

Trace Configuration EI

—Trace Source

—Trace Timing

¥ Identical delavs For all data lines
™ Trace Paort

Delay DO: |+2.EIEI ns

Delay 0 |+2.EIEI ns

WD Speed

DE|a*;.-' [z |+2.|:||:| M& P Sal'l'll:llll'lg R ake a =

Trace Exceptions " Yes Mo

1 B K

Delay 0E: |+2.EIEI ns

L0 4 Cancel | L0 4 Cancel |

Figure 3.20. Trace Settings Dialog.

Trace Source

Specifies the trace data channel to be used. Ozone’s Instruction Trace, Code Profile
and Timeline Windows are supplied with instruction trace (ETM) data that is emitted
over the trace port. The SWO channel delivers "printf" (ITM) application data to
Ozone’s Terminal Window. Please note that currently, data streaming via both trace
channels is not supported. For further information on ETM and ITM trace and how to
setup your hardware and software accordingly, please consult the J-Link user man-
ual.

Trace Port Width
Specifies the number of trace pins comprising your targets trace port.
Trace Timing

Specifies the software delays to be applied to the individual trace port data lines.
This essentially performs a software phase correction of the trace port’s data signals.

SWO Speed

Specifies the signal frequency of the SWO trace interface in Hz.

3.11.10.1 Opening the Trace Settings Dialog

The Trace Settings Dialog can be opened from the Main Menu (Edit® Trace Settings)
or by executing the user action Edit.TraceSettings (see “Edit.TraceSettings” on
page 164).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

59

3.11.11 Terminal Settings Dialog

The Terminal Settings Dialog is provided to define the settings of the data 10-inter-
faces between the debugger and the application program. Currently, only the Serial
Wire Output (SWO) interface is parameterized.

3.11.11.1 SWO Settings x|

The SWO Settings Pane hosts J-Link

settings that calibrate the SWO inter- [2O Settings
face. Please refer to the_ J-Link User CPU Clock |?2|:u:|45|:u:|| j Hz T Auko
Manual for further details on these
settings. SwO Clack | 5000000 | Hz W suto
CPU Clock
—Others
Core processor frequency of the
employed MCU. ¥ Suppress Control Charackers
SWO Clock
Data transmission speed of the SWO QK Cancel
interface.
Auto Settings

When the "auto" field of a setting is checked, the debugger auto-detects the optimal
value for the setting. Auto-detection is ticked by default.

3.11.11.2 Suppress Control Characters

When this option is checked, control characters (such as color selection control char-
acters) are removed from the text stream prior to output.

3.11.11.3 Opening the Terminal Settings Dialog

The Terminal Settings Dialog can be opened from the Terminal Window’s context
menu (see “Terminal Window” on page 98).

3.11.11.4 Applying Changes

Terminal 10 settings are applied upon pressing the OK button; a restart of the debug
session is not required.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

60 CHAPTER 3 Graphical User Interface

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

61

Chapter 4

Debug Information Windows

This chapter provides individual descriptions of Ozone’s 18 debug information win-
dows, starting with the Source Viewer.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

62

4.1

CHAPTER 4 Debug Information Windows

Source Viewer

The Source Code Viewer (or Source Viewer for short) allows users to observe pro-
gram execution on the source-code level, set source-code breakpoints and specify
the next statement to be executed. Individual source code lines can be expanded to

reveal the affiliated assembly code instructions.

startup_stm32F4xx.s x Ytasks.n: x Ymain.c o 1 "
File Scope j| f watartLEDFlashTasks j
107 woid witartLEDFlashTasks({ UBaseType t uxPriority | ;‘
1 108 {
1 o200Ea10 ELZ0 PIISH {B4-BE5 LE}
1 O200ER1E EOZE IUE P, BP, #Z0
1 02002a14 0o Moy B4, RO
105 PBaseType t xLEDTask:
110
111 f* Create the three tasks. */
@ 1 11=[- for{ xLEDTask = 0; xLEDTaszk < ledNUMEELR OF LEDS; +4+xLEDTask |
1 O200ZA1E Z000 Mov RO, #0O
1 OS00ZA18 ooos Moy RE, RO
= Z | OS00ZA1R EDO3 CMP RS, #3
u} OZ00zA10C LAOF EZE “yitartLEDFlashTasks=+0xZE ;S00Z4A3E
Z OS00ZA3A 1CED ADD RL, BB, #1
Z OZ00ZA3C E7EDr E “witartLEDFlashTasks>+0xh ;2002414
113 {
114 f* Bpawmn the task. */
2 115 [- xTaskCreate({ vLEDFlashTask, "LEDxz", led3TACE STIZE, NULL, uxPricrity
z O200ZR1E Z0oo Mo RO, #0
z o200EaE0 0032 STR RO, [3P, #+0x0C]
Z O200ZAZE oo Mo Bo, #0
Z O200zZa24 00z STR RO, [2P, #+0=x02] -
i | >|

Figure 4.1. Source Viewer

411 Code Window

The Source Viewer shares multiple features with Ozone’s second code window, the
Disassembly Window. Please see “Code Windows” on page 37 for a shared descrip-

tion of these windows.

4.1.2 Supported File Types

The Source Viewer is able to display documents of the following file types:

e C source code files: *.c, *.cpp, *.h, *.hpp
e Assembly code files: *.s

41.3 Font

The Source Viewer’s font can be adjusted by executing the user action Edit.Font (see
“Edit.Font” on page 166) or via the User Preference Dialog (see “User Preference Dia-
log” on page 44). In particular, the font size can be quick-adjusted by scrolling the

mouse-wheel while holding down the control key.

4.1.4 Symbol Tooltips

By hovering the mouse cursor over a variable, the variable’s value is displayed in a
tooltip. Please note that this feature only works for local variables when the function

Ozone User Guide (UM08025)

that contains the local variable is the active function of the Local Data Window. A

function can be activated by selecting it within the Source Viewer.

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

63

4.1.5 Expression Tooltips 1f (@« 0% [l e» '8
break;
When text is selected within the Source } c<t 0| les 1D
Viewer, it is evaluated as an expression sFormat++;
and the result is displayed in a tooltip FieldWidch = Fiel pgn: 1 a
(see "Expressions" on page 152). b owhile (1); Hex: 0Oxl
Text: '
£
4.1.6 Document Tab Bal‘ £F Filtwer out prec| poeardieom: const =
i Size: 4 B
The document tab bar hosts a tab for NunDigits = 0; T;;Z: intyteg
each source code document that has c = *sFormat;

been opened in the Source Viewer. The

tab of the visible (or active) document is highlighted. Users can switch the active
document by clicking on its tab or by selecting it from the tab bar’s drop down but-
ton. The drop-down button is located on the right side of the tab bar (see the illustra-

tion below).

Lmr' system_stm3Zfonc X\ Main.c X\ RTOSINE_STM3zZF4x_CMEIS.C X >

Figure 4.2. Document Tab Bar

4.1.6.1 Tab Bar Context Menu

The tab bar’s context menu hosts two actions that Close Chrl4-i
can be used to close the active document, or all _

. Close All Buk This Ckrl+Shift+x
documents but the active one. =

4.1.7 Document Header Bar

The document header bar provides users with the ability to quickly navigate to a par-
ticular function within the active document. The header bar hosts two drop-down
lists. The drop-down list on the left side contains all function scopes (namespaces or
classes) present within the active document. The drop-down list on the right side
lists all functions that are contained within the selected scope. When a function is

selected, the corresponding source line is highlighted and scrolled into view.

¥ Classl - | f Class -

Figure 4.3. Document Header Bar

4.1.8 Opening and Closing Documents

For the purpose of opening and closing source code documents programmatically, the
user actions File.Open and File.Close are provided (see “File Actions” on page 155).

4.1.9 Source Line Numbers

The display of source line numbers can be toggled by executing the user action
Edit.Preference using parameter PREF_SHOW _LINE_NUMBERS (see “Edit.Preference”
on page 165) or via the User Preference Dialog (see “User Preference Dialog” on
page 44).

4.1.10 Expandable Source Lines

Each text line of the active source code =] woid TestIf{int a) {
document that contains executable code 0S000z00 E480 PUSH {R7}
can be expanded or collapsed to reveal or Og000z02 BOS3 3UB &P, 5P, §l2

hide the affiliated machine instructions.
Each such text line is preceded by an expansion indicator that toggles the line’s

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

64

CHAPTER 4 Debug Information Windows

expansion state. Furthermore, when the PC Line is expanded, the debugger’s step-
ping behaviour will be the same as if the Disassembly Window was the active code
window (see "Stepping Expanded Source Code Lines" on page 119).

4.1.11 Context Menu

The Source Viewer’s context menu provides the _
following actions: Clzal stizeligams 7o

& Edit Breakpoint. .. Fa
Set / Clear / Edit Breakpoint)

. . Set Mext Stat 3 Shift+F10

Sets, clears or edits a breakpoint on the selected "R Sek Next Statemen '
source code line.] Run To Cursor Chr4F10
Set Next Statement | View Source Chrl+L
Sets the PC to the first machine instruction of the o] Yiew Disassembly CErl+D
selected source code line. Any_code b_etwee_n the 2] Wiew Data CHI+T
current PC and the selected instruction will be _
skipped, i.e. will not be executed. [Wiew Call Graph Ctrl+H
Run To Cursor @y Wakch e+
Advances program execution to the current cur-
sor position. All code between the current PC and ~ am F'.-:: Chrie
the cursor position is executed. Gota Ling. .. Ceri+l
View Source Collapse Line Chrl+Left
Jumps to the source code declaration location of Expand All Shift++
the symbol under the cursor. [Collapse Al SHiFk-
View Disassembly Select Al Chri+
Displays the first m_ach.ine insfcruction of t_he 21 Find... ChF
selected source code line in the Disassembly Win- ° Numberi \
dow (see “Disassembly Window” on page 66). e
View Data v Show Execution Counters Chrl+E

Displays the data location of the symbol under
the cursor within the Memory Window (see “Memory Window” on page 87).

View Call Graph

Displays the call graph of the function under the cursor within the Call Graph Window
(see “Call Graph Window” on page 79).

Watch

Adds the symbol under the cursor to the Watched Data Window (see “Watched Data
Window” on page 96).

Goto PC

Displays the PC line, i.e. the source code line that contains the next machine instruc-
tion to be executed. If the source code document containing the PC line is not open
or visible, it is opened and brought to the front.

Goto Line

Scrolls the active document to a particular source code line. The line number can be
specified via an input dialog that will pop up when executing this menu item.

Expand / Collapse All

Expands or Collapses all expandable lines within the current document.

Select All
Selects all text lines.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

65

Find
Displays a search dialog that lets users search for text occurrences within the active
document.

Numbering
Displays a submenu that allows users to specify the line numbering frequency.

Show Execution Counters
Toggles the display of execution counters (see "Execution Counters™ on page 39).

4.1.12 Syntax Highlighting

The Source Viewer applies syntax highlighting to source code. The syntax highlight-
ing colors can be adjusted via the user action Edit.Color (see “Edit.Color” on
page 166) or via the User Preference Dialog (see “User Preference Dialog” on
page 44).

4.1.13 Advanced Hotkeys

Table 4.4 provides an overview of the Source Viewer’s advanced hotkeys.

Hotkey Description

Ctrl+Tab Selects the next document in the list of open documents.
Alt+Left/Right Shows the previous/next location in the text cursor history.
Shift+Left/Right Expands/Collapses the current line.

Ctrl+Arrow Key Scrolls the document while keeping the text cursor position.

Table 4.4. Source Viewer Advanced Hotkeys.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

CHAPTER 4 Debug Information Windows

Disassembly Window

Ozone’s Disassembly Window displays the assembly code interpretation of MCU
memory content. The window automatically scrolls to the position of the program
counter when the program is stepped; this allows users to follow program execution
on the machine instruction level.

g
8236 0800z374h ELZE POR {Rl, B4-BE5 PC} _:J
prvIsuensFuall
i
E27 0800z37C BE=E PITEH {R3-BE,_LE}
537 0800z37E aoog Moy B4, RO
£askEENTER CRITICALYL) ;
E37 08002320 F7FE FCEZ EL “yPortEnterCritical> ;8001344
ifi{ prxlueune-ruxMessages=aiting == pxlueus-=uxlength)
537 0800z954 SEAD LI'E RO, [R4, H#+0x33]
537 08002385 SEEL LIE Bl, [B4, #+0x3C)
@ L3¢ 02002328 4738 CHMEP RO, Rl
0 0200zZ3984 L10E ENE “<pruwlsfuensFull=+0x1&6 ;20029392
x*Beturn = pdTRUE;
536 08002Z3&C Z001 Mov RO, #1 -
o | >

Figure 4.5. Disassembly Window

4.2.1 Code Window

The Disassembly Window shares multiple features with Ozone’s second code window,
the Source Viewer. Please refer to “Code Windows” on page 37 for a shared descrip-
tion of these windows.

4.2.2 Offline Functionality

The disassembly window is functional even when Ozone is not connected to the tar-
get MCU. In this case, machine instruction data is read from the program file. In par-
ticular, disassembly is only performed on MCU memory when the program file does
not provided data for the requested address range.

4.2.3 Instruction Rows

Each standard text row within the Disassembly Window displays information about a
particular ARM machine instruction. The instruction information is divided into 4
parts:

Address Encoding Mnemonic Operands

08000152 0304F107 ADD R3, R7, #0x04

Table 4.7. Instruction row information

The encoding of a machine instruction is identical to the data stored at the instruc-
tion’s memory address. The term "mnemonic" refers to the abbreviated name of a
machine instruction.

4.2.4 Mixed Mode

The Disassembly Window provides two display options - Show Source and Show
Labels - that augment machine instruction rows with source code and ELF file symbol
information. These display options can be adjusted via the user action Edit.Prefer-
ence (see “Edit.Preference” on page 165) or via the User Preference Dialog (see
“User Preference Dialog” on page 44).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

67

4.2.5 Text Highlighting

The Disassembly Window applies syntax highlighting to assembly code and text high-
lighting to source code and symbol label rows. The text highlighting colors can be
adjusted via the user action Edit.Color (see “Edit.Color” on page 166) or via the User
Preference Dialog (see “User Preference Dialog” on page 44).

4.2.6 Viewport

The address range displayed within the Disassembly Window is referred to as the
window’s viewport. The viewport can be modified in multiple ways that are described
below.

Positioning the Viewport

The address of the first instruction displayed within the Disassembly Window can be
set using action View.Disassembly. When the action is executed from the context
menu or without an address argument, an input dialog will pop up that allows users
to enter the address.

Scrolling the Viewport

The Disassembly Window’s viewport can be scrolled in any of the ways depicted in
the table below.

Mouse Wheel | Arrow Keys Page Keys Scroll Bar

4 Lines 1 Line 1 Page 1 Line

Table 4.8. Viewport scrolling methods

4.2.7 Context Menu

The Disassembly Window’s context menu provides the following actions:

Set / Clear / Edit Breakpoint

Sets/Clears or Edits a breakpoint on the selected Clor Bl e s Fs
machine instruction (see “Instruction Break- & EditEreskpoirt... F&
points” on page 121).)
W Sek Mexk P Shifk+F10
Set Next PC %] Run To Cursor Ctrl+F10
Specifies that the selected machine instruction
should be executed next. Any instructions that |c| Yiew Source Chrl+L
would usually execute when advancing the pro-
gram to the selected instruction will be skipped. =P Goko PC CEr+P
0. ‘Goto Address... Ckrl+13

Run To Cursor

Advances the program execution point to the v Show Execution Counters Chrl+E
current cursor position. All code between the v
current PC and the cursor position is executed.

Shiows Source
v Show Labels

View Source
“ Export...

Displays the first source code line that is associ- =
ated with the selected machine instruction (as a result of code optimization during
the compilation phase, a single machine instruction might be affiliated with multiple
source code lines).

Goto PC

Scrolls the viewport to the PC line.
Goto Address

Sets the viewport to an arbitrary memory address. The address is obtained via an
input dialog that pops up when executing this menu item.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

68 CHAPTER 4 Debug Information Windows

Show Execution Counters

Toggles the display of instruction execution counters (see "Execution Counters" on
page 39).

Show Source

Specifies if instruction rows should be augmented with source code information.

Show Labels
Specifies if instruction rows should be augmented with symbol labels.

Export

Opens the Disassembly Export Dialog (see "Disassembly Export Dialog" on page 54)
that allows to export the disassembly of arbitrary memory address ranges to CSV
files.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

4.3

69

Instruction Trace Window

Ozone’s Instruction Trace Window displays the history of executed machine instruc-
tions.

Instruction Trace ﬂ
| main 3 ;I

0z001&888 LDE Bl, [0x0S0015CE] ZEGCER _RTT WritelZtring(l, "S$Effff Test:
0s00ls558 MOV RO, #0O

0g001&552 EL <SEGGER_RTT WriteStrings

+] SEGGER_RTT_WriteString 5
= _strlen 54
gs000&283 MOV Bl, RO static int strlen{const char* =) |

ggo000&eza MOV RO, #0O Len = 0;

gg000ezC MOV Rz, RO

og000&szE CHMP Rl, #0 if s == NULL)} {

02000630 ENE <_strlen> +0xE -
T b

Figure 4.9. Instruction Trace Window

4.3.1 Hardware Requirements

The Instruction Trace Window uses the Embedded Trace Macrocell (ETM) and the
trace pins with a J-Trace or the optional Embedded Trace Buffer (ETB) with a J-Link or
J-Trace. It is target dependent if tracing via ETB, tracing via trace pins or tracing at
all is supported. For more information about trace with J-Link / J-Trace, please refer
to the J-Link User Manual.

4.3.2 Limitations

The Instruction Trace Window currently cannot be used in conjunction with the Termi-
nal Window’s printf via SWO feature.

4.3.3 Setup

When no program download is performed on debug session start, the J-Link firm-
ware’s trace cache must be initialized manually in order for instruction tracing to
work correctly (see "lInitializing the Trace Cache™ on page 132).

4.3.4 Instruction Stack

The Instruction Trace Window displays the program'’s instruction execution history as
a stack of machine instructions. The instruction at the bottom of the stack has been
executed most recently. The instruction at the top of the stack was executed least
recently. The instruction stack is rebuild when the program is stepped or halted.
Please note that the PC instruction is not the bottommost instruction of the stack, as
this instruction has not yet been executed.

4.3.5 Call Frame Blocks

The instruction stack is partitioned into call frame blocks. Each call frame block con-
tains the set of instructions that were executed between entry to and exit from a pro-
gram function. Call frame blocks can be collapsed or expanded to hide or reveal the
affiliated instructions. The number of instructions executed within a particular call
frame block is displayed on the right side of the block’s header.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

70

CHAPTER 4 Debug Information Windows

4.3.6 Backtrace Highlighting

Both code windows highlight the instruction that is selected within the Instruction
Trace Window. This allows users to quickly understand past program flow while key-
navigating through instruction rows. The default color used for backtrace highlighting
is yellow and can be adjusted via the user action Edit.Color (see “Edit.Color” on
page 156) or via the User Preference Dialog (see “User Preference Dialog” on
page 43).

4.3.7 Context Menu

The context menu of the Instruction Trace Window

provides the following operations: @ Set Breakpoint F2
Set / Clear Breakpoint | Wiew Source Chrl+
Sets or clears a breakpoint on the selected instruc- || Wigw Disassembly Chrl+D
tion.

. #: Block Skart Shift+Up
View Source _

]))) % Block End ShiFt+Down
Displays the source code line associated with the
selected i_nstruction in the Source Viewer (see Expand Al Shift4++
Source Viewer” on page 62). B Collapse 4l ShiFb4
View Disassembly N

. E Ea0a
Displays the selected instruction in the Disassem- - HAR

bly Window (see
page 66).

Block Start / End
Selects the topmost or bottommost instruction row of the active function node.

Expand / Collapse All

Expands/collapses all function nodes.

“Disassembly Window” on

Export

Opens a dialog that allows users export instruction trace data to a CSV file.

4.3.8 Hotkeys

Ozone User Guide (UM08025)

The Instruction Trace Window provides multiple hotkeys to navigate instruction rows.
Table 4.10 gives an overview.

Hotkey Description
Right or + Expands the currently selected function node.
Collapses the currently selected function node. If an instruction is
Left or - - S : L
selected, the function containing the selected instruction is collapsed.
Up Selects and scrolls to the next instruction.
Down Selects and scrolls to the previous instruction.
. Selects and scroll to the last (topmost) instruction of the currently
Shift+Up .
selected function node.
. Selects and scroll to the first (bottommost) instruction of the currently
Shift+Down -
selected function node.
PgUp Scrolls one page up.
PgDn Scrolls one page down.

Table 4.10. Instruction Trace Window Hotkeys.

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

71

4.3.9 Automatic Data Reload

The Instruction Trace Window automatically adds more trace data to the instruction
stack each time the editor is scrolled up and the first row becomes visible.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

72

CHAPTER 4 Debug Information Windows

4.4 Code Profile Window

Ozone’s Code Profile Window displays runtime code statistics of the application being
debugged.

o
File | Funckion ISDurce Coverage ‘TIInst. Coverage IRun Cu:uurlLu:uau:I =
+ F SyskemInit lo0.0% §11/11; 100.0% {36/ 3 1 [#] 0. 00%
+ f Reset_Handler 100.0% (575} 100.0% (575} 1] o.o0%
+ f SEGGER_RTT_printf 1o0.0% (353) lo0.0% (8/8) losz 1.02%
+ f main 98.7% L7857 99.7% (310 1] 1.47%
+ f SEGGER_RTT_wprintf g4.1% (E28/E63) 92.9% (23671 108z [#] 95.79%
=| f SEGGER_RTT_WriteString gl._8% (9711} SZ_4% (14/1 3 0.09%
+ |c| 165: Len =0; 1o0.0% {151} l00.0% (2/2) 3w o0.oo0%
= |©) 166! 0F (5 ==MULL) { 0.0% (0510 ED.0% (152} 3 v 0. 00%
02000792 CMP B3, #0 N/L lo0.0% (1/1) 3 0. 00%
02000794 BNE <_strlen»+0 N/A 0.0% (071} 3] o0.oo0%
+ |c| 167 return O 0.0% (041} o.0% (072 o[0.00%
+ e 170:0F (%5 ==10) 100.0% {11} 100.0% (373} 1z1 [#] 0.04%
+ ©] 173 Lend+; lo0.0% (1/L) lo0.0% (1/1) 115 [#] 0.01%
+ G 174 5+ 100.0% {151} lo0.0% (171} 11z W] 0.01%
F) 175 Fwhile (1) 100.0% (141 100.0% (171} 115 [#] 0.01%
+ | 176! return Len; loo.0% {11} 100.0% (141} 3 v 0. 00%
+ |c| 351! ink SEGGER_RTT ‘WriteStringfL 100.0% (171} lo0.0% (171} 3 W 0. 00%
4 |©] 354: Len = _strlen{s); 100.0% {1/L1) 100.0% {1/L1) 3 [+ 0.00%
+ |c| 355: return SEGGER_RTT_Write{Buf 100.0% ({1s1} lo00.0% (2720 3] o.o0%
+ f _PrintUnsigned 7E.8% (2E/33) 93.1% {(94/L1 1088 [] -
1| | LI—I

Figure 4.11. Code Profile Window

441 Table Window

The Code Profile Window shares multiple features with other table-based debug
information windows (see “Table Windows” on page 41).

4.4.2 Hardware Requirements

The base hardware requirements for code profiling are the same as those for instruc-
tion tracing (see "Hardware Requirements" on page 69). However, Ozone’s code pro-
file functionality can be greatly enhanced by employing a J-Trace PRO debug probe
(see "Streaming Trace" on page 126).

4.4.3 Code Statistics

The Code Profile Window displays 4 different code statistics about program entities. A
program entity is either a source file, a function, an executable source line or a
machine instruction. Table items can be expanded to show the contained child enti-
ties.

Instruction Coverage

Amount of machine instructions of the program entity that have been covered since
code profile data was reset. A machine instruction is considered covered if it has
been "fully" executed. In the case of conditional instructions, "full execution” means
that the condition was both met and not met. In Figure 4.11, 99.7% or 310 of 311
machine instructions within function main were covered.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

73

Source Coverage

Amount of executable source code lines of the program entity that have been covered
since code profile data was reset. An executable source code line is considered cov-
ered if all of its machine instructions were fully executed. In Figure 4.11, 98.7% or
78 of 79 executable source codes lines within function main were covered.

Run Count

Amount of times a program entity was executed since code profile data was reset.

Load

Amount of instruction fetches that occurred within the program entities address
range divided by the total amount of instruction fetches that occurred since code pro-
file data was reset.

Fetch Count

Amount of instruction fetches that occurred within the address range of the program
entity.

4.4.4 Execution Counters

The execution count, coverage and load information can be shown in the Code Win-
dows, as well. For more information, refer to "Execution Counters" on page 39.

4.4.5 Filters

Individual program entities can be filtered from the code profile statistic. In particu-
lar, there are two different type of filters that can be applies to program entities, as
described below.

Profile Filter

When a profile filter is set on a program entity, its CPU load is filtered from the code
profile statistic. After filtering, the load column displays the distribution of the
remaining CPU load across all none-filtered program entities.

Coverage Filter

When a coverage filter is set on a program entity, its code coverage value is filtered
from the code profile statistic. After filtering, the code coverage columns displays
coverage values computed as if the filtered program entities do not exist.

Adding and Removing Profile Filters

A profile filter can be set and removed via user actions Profile.Exclude and Pro-
file.Include (see "Code Profile Actions" on page 159). In Addition, the load column of
the Code Profile Window provides a checkbox for each item that allows users to
quickly set or unset the filter on the item.

Adding and Removing Coverage Filters

A coverage filter can be set and removed via user actions Coverage.Exclude and Cov-
erage.Include (see "Code Profile Actions" on page 159). In Addition, the code cover-
age columns of the Code Profile Window provide a checkbox for each item that allows
users to quickly set or unset the filter on the item.

Observing the List of Active Filters

The Code Profile Filter Dialog can be accessed from the context menu and displays all
profile and coverage filters that were set, alongside the affiliated user action com-
mands that were executed.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

74 CHAPTER 4 Debug Information Windows

4.4.6 Context Menu

(o] Wigw Source Chrl+LI
The context menu of the Code Profile B e Bl ==l ChI+D
Window provides the following actions: — -
View Source ‘l= Exclude From Load & Code Coverage Del
Displays the selected item within the B YIS e s Eareiee
Source Viewer (see “Source Viewer” on Exclude From Load

age 62). —
pag) = Exclude...
View Disassembly 7o Include...
Displays the selected item within the < Remave Al Fiters A+l
Disassembly Window (see “Disassembly T, chow Fil
Window” on page 66). q how Fiters. .
Include/Exclude from Show Execution Counters in Source
Filters or unfilters the selected item Show Execution Counters in Disassembly
from the load, code coverage or both Reset Execution Counters Chrl+R
statistics.
aroup by Source Files Ckrl+ig

Exclude (Dialog) Sart with Filkers
Moves multiple items to the filtered set O, Find Source Caverage Ctl+E
(see "Profile.Exclude" on page 188). _
Include (Dialog) = Export...

Removes multiple items from the fil-
tered set (see "Profile.Include" on
page 188).

Remove All Filters

Removes all filters.

Show Filters

Opens a dialog that displays an overview of the currently active filters.
Show Execution Counters in Source

Displays execution counters within the Source Viewer (see “Source Viewer” on
page 62).

Show Execution Counters in Disassembly

Displays execution counters within the Disassembly Window (see “Disassembly Win-
dow” on page 66).

Reset Execution Counters

Removes all filters.

Group by Source Files

Groups all functions into expandable source file nodes.

Sort With Filters

When this option is checked, filtered items are moved to the bottom.

Find (Column Name)

Scrolls to a particular item within the selected column and highlights it.

Export

Opens the Code Profile Report Dialog (see "Code Profile Report Dialog"” on page 55).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

4.5 Console Window

Ozone’s Console Window displays both application- and user-induced logging output.

Debug. 3tarti():
BeforeTargetConnect.
TargetConnect.
Exec.Connecti];

J-Link: connected to dewice
AfterTargetConnect.

Ir 1=

L

K

Figure 4.12. Console Window

4.5.1 Command Prompt

The Console Window contains a command prompt at its bottom side that allows users
to execute any user action that has a text command (see “User Actions” on page 28).
It is possible to control the debugger from the command prompt alone.

4.5.2 Message Types

The type of a console message depends on its origin. There are three different mes-
sage sources and hence there are three different message types. The message types
are described below.

4.5.2.1 Command Feedback Messages

When a user action is executed — be it via the Console Window’s command prompt or
any of the other ways described in "Executing User Actions" on page 28 — the action’s
command text is added to the Console Window’s logging output. This process is
termed command feedback. When the command is entered erroneously, the com-
mand feedback is highlighted in red.

Window.Show ("Console");

45.2.2 J-Link Messages

Control and status messages emitted by the J-Link firmware are a distinct message
type.

J-Link: Device STM32F13ZE selected.

4.5.2.3 Script Function Messages

The user action Util.Log outputs a user supplied message to the Console Window.
Util.Log can be used to output logging messages from inside script functions (see
“Util.Log” on page 174).

Executing Script Function "BeforeTargetConnect".

4.5.3 Message Colors

Messages printed to the Console Window are colored according to their type. The
message colors can be adjusted via the user action Edit.Color (see “Edit.Color” on
page 166) or via the User Preference Dialog (see “User Preference Dialog” on
page 44).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

76 CHAPTER 4 Debug Information Windows

4.5.4 Context Menu

The context menu of the Console Window provides the Capy Chrlec
following actions:

Copy Select Al Chrl4+8,
Copies the selected text to the clipboard. < Clear Alt-+Del
Select All @ Commands Ckrl+-H

Selects all text lines.

Clear
Clears the Console Window.

Commands
Prints the command help.

4.5.5 Command Help

When the user action Help.Commands is executed, a quick facts table on all user
actions including their commands, hotkeys and purposes is printed to the Console
Window (see “Help.Commands” on page 180). The command help can be triggered
from the Console Window’s context menu or from the help menu.

A
Yiew, 3ource symbol Aaddr /3rcloc Shift+3 Displays the snu:t;l
Watch. add Symbol Shift+w 4dds a sywbol to
Windonr, Add Window, Symbol 4dds a symbol to

. . . =
Window.Clear Windowr Clears a window _
_ﬂ—l pI

Figure 4.13. Command help displayed within the Console Window

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

77

4.6 Breakpoint Window

Ozone’s Breakpoint Window allows users to observe and edit breakpoints.

4
Location Permitked Impl. | &ctual Impl, | Conkexk “ | Task Filker | Skip # | Condikion |
+ main. c:294 Any * | Hard wTaskStartSch BkSEM1]
Q200lALZ Saft * Soft (Flash) PUSH {R3-I. 1]
0E001A02 Hard * | Hard Mov RO, #. 4 i==0
= tasks.c:E37 Any * | Hard for{ uxPricrit Mathl 0
OS000ES4 Ay ™ Hard MoV RO, # Mathl]
OS000ESA By * Hard ADT B4, B Mathl 1]

Figure 4.14. Breakpoint Window

4.6.1 Table Wi

ndow

The Breakpoint Window shares multiple features with other table-based debug infor-
mation windows (see “Table Windows” on page 41).

4.6.2 Breakpo

int Attributes

The Breakpoint Window displays the following information about breakpoints:

Attribute Description
State Indicates if the breakpoint is enabled or disabled.
Location Source line or memory address location of the breakpoint.

Permitted Impl.

Permitted implementation type for the breakpoint
(see see “Breakpoint Implementation Types” on page 146).

Actual Impl. Actual implementation type of the breakpoint.

Context Source code or assembly code line affiliated with the breakpoint.
Task Filter Name or ID of the RTOS task that triggers the breakpoint.

Skip Count The amount of times the breakpoint is skipped when it is encountered.
Condition C-language expression that must evaluate to non-zero (or change)

in order to trigger the breakpoint (see “Break.Edit” on page 198).

Table 4.15. Breakpoi

4.6.3 Breakpo

The Breakpoint Dialog allows users to place breakpoints -
on: P 9 P P ull Set/Clear Breakp x|
e Memory addresses of machine instructions Location:

e Source code |
e Functions

nt attributes

int Dialog

ines Imain

Source code lines are specified in a predefined format
(see “Source Code Location Descriptor” on page 142).
The Breakpoint Dialog can be accessed via the context
menu of the Breakpoint Window.

4.6.4 Expandable Source Breakpoints

Source line breakpoints can be expanded in order to reveal their derived instruction
breakpoints (see “Derived Instruction Breakpoints” on page 121).

Ozone User Guide (UM08025)

St Zancel |

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

78 CHAPTER 4 Debug Information Windows

4.6.5 Context Menu

The Breakpoint Window’s context menu hosts actions Clear Fg
that manipulate breakpoints and that navigate to a Disahle SHiFt+FS
breakpoint’s source code or assembly code line (see @& Edi =
“Breakpoint Actions” on page 158). e

Clear || Miew Source Chrl+
Clears the selected breakpoint. D] View Disgssembly Cbrl+D
Enable / Disable @& St [Clear... Alt++
Enables or disables the selected breakpoint. <@ Clear all Alt4+Del

Edit
Edits advanced properties of the selected Breakpoint such as the trigger condition
(see “Breakpoint Properties Dialog” on page 50).

View Source

Displays the source code line associated with the selected breakpoint. This action can
also be triggered by double-clicking a table row.

View Disassembly

Displays the assembly code line associated with the selected breakpoint.
Set / Clear

Opens the Breakpoint Dialog (see “Breakpoint Dialog” on page 77).
Clear All

Clears all breakpoints.

4.6.6 Editing Breakpoints Programmatically

Ozone provides multiple user actions that allow users to edit breakpoints from script
functions or at the command prompt (see “Breakpoint Actions” on page 158).

4.6.7 Offline Breakpoint Modification

Breakpoints can be modified both in offline and in online mode (see “Offline Break-
point Modification” on page 123).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

79

4.7 Call Graph Window

Ozone’s Call Graph Window informs about the application’s function calling hierarchy
and stack usage.

g
Marne & IStack Total IStau:k Local IDepth ICaIIeu:I Fram Zall Site PC ;I
-| Reset_Handler 456+ NSk 1z + 1
+ SyskernInik z4 2 1 starkup_stm32f4x 02000916
F __libc_inik_array la+ 1 1 + FP startop_skm3zf4wxx 02000914
—| rnain 4L5+ Z4 1z + B starkup_stm3zf4wx 0200091E
+ O5_Error 16+ 18 1 Main.c:34 0S000446
05 _DisablelInt H/A Nk a0 Pain.c:34 0S0004A8
+ O5_InitKern_\VFP 1&a+ MNs/h 3 + FP Main.c:35 0S0004EC
+ 05 _InitHW 7zt 40 Z Main,c: 36 ago0a4ca
=] Trace_Inik 4324+ 24 11 + B Main.c:37 0S0004C4
+| SEGEER_RTT_ConfigUpBuffer | 42 3z 1 trcKernelPort.c: 234 0S00L1AEE
+| SEGEER_RTT _ConfigDownBuffe 42 3z 1 trckernelPort.c: 240 0S001AEE
05 PTracelnit MN/a MN/h u] trckernelPort.c: 245 02001474
-1 wTraceStoreUserEventChannelt 408+ le 10 + B brcKernelPort.c:247 02001474
wTraceSaveSvmbol 3z 3z 0 trcRecorderc: 276 0S001ADS
-1 wTraceStoreStringEvent 3924+ 40 2 + I brcRecordenc:2?9 0S00L1AE4
-] prvTraceStoreSkringEvent 352+ lzs 2 + I brcRecordenc:§20 02002316 -
| | o

Figure 4.16. Call Graph Window

4.71 Table Window

The Call Graph Window shares multiple features with other table-based debug infor-
mation windows provided by Ozone (see “Table Windows” on page 41).

4.7.2 Overview

Each table row of the Call Graph Window provides information about a single function
call. The top level rows of the call graph are populated with the program’s entry point
functions. Individual functions can be expanded in order to reveal their callees.

4.7.3 Table Columns

Name
Name of the function.

Stack Total

The maximum amount of stack space used by any call path that originates at the
function, including the function’s local stack usage.

Stack Local

The amount of stack space used exclusively by the function.

Depth

The maximum length of any non-recursive call path that originates at the function.

Called From

Source code location of the function call.

Call Site PC

Instruction memory location of the function call.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

80 CHAPTER 4 Debug Information Windows

4.7.4 Uncertain Values

A plus (+) sign that follows a table value indicates that the value is not exact but
rather a lower bound estimate of the true value. A trailing "R" or "FP" further indi-
cates the reason of the uncertainty. R stands for recursion and FP stands for function
pointer call.

4.7.5 Recursive Call Paths

In order to obtain meaningful values for recursive call paths, the Call Graph Window
only evaluates these paths up to the point of recursion. This means that the total
stack usage and depth values obtained for recursive call paths are only lower bound
estimates of the true values (see "Uncertain Values" on page 80).

4.7.6 Function Pointer Calls

The Call Graph Window is able to detect function calls via function pointers. Cur-
rently, these calls are restricted to be leaf nodes of the call graph.

4.7.7 Accelerated Initialization

The Call Graph Window employs an optimized initialization routine when the ELF pro-
gram file provides address relocation information. Please consult your compiler’s user
manual for information on how to include address relocation information in the out-
put file (GCC uses the compile switch -q).

4.7.8 Context Menu

View Call Site c] Wiew Call Site CritL
Displays the call location of the selected c| Wiew Implementation Chrla
function within the Source Viewer (see —

Source Viewer on page 62). This action can Show path with max stack usage Chrl+F
also be triggered by double-clicking a table

row. v Group Callees Ctrl+3
View Implementation [Collapse &l Shift+-

Displays the implementation of the selected
function within the Source Viewer (see
Source Viewer on page 62).

Show path with max stack usage
Expands all table rows on the call path with the highest stack usage.

Group Callees

Displays all calls made to the same function as a single table row.

Expand All / Collapse All

Expands or collapses all top-level entry point functions.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

81

4.8 Call Stack Window

Ozone’s Call Stack Window displays the function calling hierarchy that led to the cur-
rent program execution point.

Call Stack ﬂ

Function Stack Info Source P | Return Address | Return Address Lo
= xQueleGenericCreate 0@ Z0013ZF0 queuwe.c:3l4 0800zZ0ES O8B00EZFGA Bld
watartDynamicPriorityTasks | 24 @ Z0013ZF0 dynamic.c:190 0S00ZF56 0S001C4A [Z0013304]
pryvOptionalyCreateCamprel 24 @ 20013308 main.c 552 0g00lc4s 08001a0C [2001331C]
main 0@ z0013320 main.c:291 OS001a05 MNAA unspecified
1] | |

Figure 4.17. Call Stack Window

4.8.1 Table Window

The Call Stack Window shares multiple features with other table-based debug infor-
mation windows (see “Table Windows” on page 41).

4.8.2 Function Call Frames

The topmost entry of the Call Stack Window displays information about the current
program context. Each of the other entries displays information about a previous
program context. As an example consider Figure 4.17. Here, the fourth row describes
the program context that was attained when the program execution point was within
function main one instruction before function "prvOptionallyCreate..." was called.

Table Column | Description

Function The calling function’s name.

Stack Info Size and position of the stack frame of the calling function.
Source Source code location of the call site.

PC Memory address location of the call site.

Return Address | PC that will be attained when the program returns from the call.

Return Address
Location

Data location of the return address value.

Table 4.18. Call site information

Branch Sites

A call site that the debugger cannot affiliate with a source code line is displayed as
the address of the machine instruction that caused the branch to the called function.

4.8.3 Active Call Frame

By selecting a table row within the Call Stack Window, the affiliated call frame
becomes the active program execution point context of the debugger. At this point,
the Register and Local Data Windows display content no longer for the current PC,
but for the active call frame. The active frame can be distinguished from the other
frames in the call stack by its color highlight.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

82 CHAPTER 4 Debug Information Windows

4.8.4 Context Menu

The Call Stack Windows’s context menu hosts actions _
that navigate to a call site’s source code or assembly LC]
code line (see “View Actions” on page 171). |o| Wiew Disassembly Chrl+D

View Source

Displays the selected call site within the Source Viewer (Source Viewer on page 62).
This action can also be triggered by double-clicking a table row.

View Disassembly

Displays the selected call site within the Disassembly Window (Disassembly Window
on page 66).

Wigw Source Chel+L

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

83

4.9 Data Breakpoint Window

Ozone’s Data Breakpoint Window allows users to observe and edit data breakpoints
(see “Data Breakpoints” on page 122). Data breakpoints (watchpoints) are break-
points that monitor memory areas for specific types of 1/0 accesses.

z
Address | Address Mask | Symbal On | Access Type | Aocess Size | Makch Yalue | Walue Mask |
20003000 QO0OO0QO00 SystemCoreClock Write Cnly Halfword 0x10 Q00000FF
zZ0oog0l4 00000000 Color [0 Readirite futo Access 0x0 FFFFFFFF
20003018 00000000 Hima:x Read Cnly Byte 0x0 FFFFFFFF

Figure 4.19. Data Breakpoint Window

491 Table Window

The Data Breakpoint Window shares multiple features with other table-based debug
information windows (see “Table Windows” on page 41).

4.9.2 Data Breakpoint Attributes

Each column of the Data Breakpoint Window displays a different data breakpoint
attribute. The attributes are described in "Data Breakpoint Attributes™ on page 122.

4.9.3 Data Breakpoint Dialog

Data breakpoints are set via the Data Breakpoint Dialog. This dialog can be opened
from the window’s context menu (see “Data Breakpoint Dialog” on page 49).

4.9.4 Context Menu

The Data Breakpoint Window’s context menu hosts

actions that manipulate data breakpoints and that navi- Clear F3

gate to a data breakpoint’s source code or assembly Disable Shift+F2

code location (see “Breakpoint Actions” on page 158). & Edit -

Clear | Wiew 5 Chrl+-U
C 1EW S0UFCE rl+

Clears the selected data breakpoint. — -

Enable / Disable sl coT

Enables or disables the selected data breakpoint. e S Alt++

Edit < Clear all Alb+Del

Opens the Data Breakpoint Dialog in editing mode (see
“Data Breakpoint Dialog” on page 49).

View Source

Displays the source code line associated with the selected data breakpoint within the
Source Viewer (see “Source Viewer” on page 62). This action can also be triggered
by double-clicking a table row.

View Data

Displays the data location associated with the selected data breakpoint within the
memory Window (see “Memory Window” on page 87).

Set / Clear
Opens the Data Breakpoint Dialog (see “Data Breakpoint Dialog” on page 49).

Clear All
Clears all data breakpoints.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

84 CHAPTER 4 Debug Information Windows

4.9.5 Offline Data Breakpoint Manipulation

The Data Breakpoint Window is operational both in offline and online mode (see
“Offline Breakpoint Modification” on page 78).

4.9.6 Editing Data Breakpoints Programmatically

Ozone provides multiple user actions that allow users to edit data breakpoints from
script functions or at the command prompt (see “Breakpoint Actions” on page 158).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

85

4.10 Functions Window

Ozone’s Functions Window lists the functions defined within the application program.

A
Mame I Lire I File: | fddress Range |ﬂ
@& DescentTree Main.c 08000344-03000406
_InlineAddrod 17 Main.c
= _InlinefMultiple 31 Main.c
=| inlined in: _DescentTree a6 Main.c 0s000358-08000404
_InlineSwap 23 Main.c ;I

Figure 4.20. Functions Window

4.10.1 Table Window

The Function Window shares multiple features with other table-based debug informa-
tion windows (see “Table Windows” on page 41).

4.10.2 Function Attributes

The Functions Window displays the following information about functions:

Attribute Description

Name Name of the function.

Line Line number of the function’s first source code line.

File Source code document that contains the function.

Address Range Memory address range covered by the function’s machine code.

Table 4.21. Function attributes

4.10.3 Inline Expanded Functions

A function that is inline expanded in one or multiple other functions can be expanded
and collapsed within the Functions Window to show or hide its expansion sites. As an
example, consider Figure 4.20. Here, the Function _InlineMultiple has one expansion
site: it is inline expanded within the function _DescentTree.

4.10.4 Breakpoint Indicators

A breakpoint icon proceeding a function’s name indicates that one or multiple break-
points are set within the function.

4.10.5 Context Menu

The Function Windows’ context menu hosts actions

that navigate to a function’s source code or assembly @ 5=t Breakpoint =
code line (see “View Actions” on page 156). .

|| Yiew Source Zkrl+L
Set/Clear Breakpomt |p| VMiew Disassermbly Ckrl+D
Sets or _clears a breakpoint on the function’s first | Wiew Call Graph Chrl+H
machine instruction.

View Source

Displays the first source code line of the selected function within the Source Viewer.
If an inline expansion site is selected, this site is shown instead.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

86

CHAPTER 4 Debug Information Windows

View Disassembly
Displays the first machine instruction of the selected function within the Disassembly
Window. If an inline expansion site is selected, this site’s first machine instruction is

displayed instead.

View Call Graph
Displays the call graph of the function within the Call Graph Window.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

87

4.11 Memory Window

Ozone’s Memory Window displays MCU memory content.

Memory2 @ 20000000 |
2000000 v B B B Blo & £ £ &

20000000 [§3 45 47 47 45 32 20 52 54 54 00 00 00 00 00 00 [EGGEZ.RTT...... -
20000010 02 00 30 00 02 00 00 00 91 22 12 38 BS 22 22 22 ..0...... 0L
20000020 00 01 00 00 12 00 03 33 00 00 00 00 01 00 00 00 R
20000030 00 0F 33 02 00 00 0D 0D 0D 00 00 30 00 03 00 00 ..3H....... 0....
20000040 00 00 03 00 00 00 00 00 30 21 00 08 2C 07 00 20 0'..,... ¥l

Figure 4.22. Memory Window

4.11.1 Change Level Highlighting

The Memory Window employs change level highlighting (see “Change Level Highlight-
ing” on page 29).

4.11.2 Data Sections

The Memory Window’s data sections display memory content in two different for-
mats.

Hex Section

The Memory Window’s central data section displays memory content as hexadecimal
blocks. The amount of hexadecimal digits that are displayed per block can be
adjusted to 2, 4 or 8 nibbles per block. In the illustration above, the display mode is
set to 2 nibbles (or 1 byte) per block.

ASCII Section

The data section on the right side of the Memory Window displays the textual inter-
pretation (ASCII decoding) of MCU memory data.

4.11.3 Viewport

4.11.3.1 Positioning the Viewport —

The address range displayed within the Memory Window is referred to as the win-
dow’s viewport. The viewport can be modified in any of the following ways:

The address of the first byte displayed within the

Memory Window can be set via the action View.Mem- bilemat7 (Aellizes

ory. When the action is executed from the context |ﬂ

menu or without an argument, an input dialog will

show up that allows users to enter the viewport ok Cancel |

address (see illustration on the right).

4.11.3.2 Scrolling the Viewport

The Memory Window’s viewport can be scrolled in any of the following ways:

Mouse Wheel | Arrow Keys Page Keys Scroll Bar

4 Lines 1 Line 1 Page 1 Line

Table 4.23. Viewport scrolling methods

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

88 CHAPTER 4 Debug Information Windows

4.11.4 Toolbar

2000057« v B B B Blo & & £ ¢

L

Figure 4.24. Toolbar of the Memory Window.

The Memory Window’s toolbar provides quick access to the window’s options. All tool-
bar actions can also be accessed via the window’s context menu. The toolbar ele-
ments are described below.

Address Bar

The toolbar’s address bar provides a quick way of modifying the viewport address,
i.e. the memory address of the first byte that is displayed within the Memory Win-
dow. When a symbol expression is input into the address bar, the memory window
automatically scrolls to the expression value each time it changes.

Access Width

The red tool button allows users to specify the memory access width. The access
width determines whether memory is accessed in chunks of bytes (access width 1),
half words (access width 2) or words (access width 4).

Display Mode

The blue tool buttons let users choose the display mode. There are three display
modes that differ in the amount of hexadecimal figures (nibbles) that are displayed
per block in the window’s hex section. The display mode can be set to 1, 2 or 4 bytes
per hexadecimal block, which corresponds to 2, 4, or 8 nibbles per block.

Fill Memory

Opens the Fill Memory Dialog (see “Fill Memory” on page 53).

Save Memory Data

Opens the Save Memory Dialog (see “Save Memory Data” on page 52).
Load Memory Data

Opens the Load Memory Dialog (see “Load Memory Data” on page 52).
Update Interval

Displays the Auto Refresh Dialog (see “Periodic Update” on page 88).

4.11.5 Generic Memory Dialog

The "Fill Memory", "Save Memory" and "Load Memory" features of the Memory Win-
dow are implemented by the Generic Memory Dialog (see “Generic Memory Dialog”
on page 52).

4.11.6 Periodic Update

The Memory Window is capable of periodically updat-
ing the displayed memory area at a fixed rate. The =

refresh interval can be specified via the Auto Refresh
Dialog that can be accessed from the toolbar or from
the context menu. The periodic refresh feature is | 100
automatically enabled when the program is resumed
and is deactivated when the program is halted. It is
globally disabled by clicking on the dialog’s disable
button.

Interval [ms]

0, Disable |

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

89

4.11.7 Symbol Drag & Drop

The memory window accepts drops of symbol and register window items. When an
item is dropped onto the window, the editor is scrolled to the memory address affili-
ated with the item.

4.11.8 Context Menu

The Memory Window’s context menu provides the
following actions:

Goto Address

Opens an input dialog that allows users to enter the
Memory Window’s viewport address.

=]
*

. f@oko Address. .. !

Display 1 Byte Ikems Chrl+1
Display 2 Byte Ikems Chrl+2
Display 4 Byte Ikems krl+3

Display Mode

Sets the display mode to either 1, 2 or 4 bytes per
hexadecimal block.

Access 1 Byte Ikems

Access 2 Byte Ikems

elp B |e|lp B

Access 4 Byke Ikems
Access Mode

Sets the memory access width to either byte (1), < Eil Chrl+F
half-word (2) or word (4) access. ¥ Save Chrl+E
Fill 2 Load Ztrl+L
Opens the Fill Memory Dialog (see “Fill Memory” on B AutoRefresh... Chl+R
page 53). =

Save Toolbar

Opens the Save Memory Dialog (see “Save Memory

Data” on page 52).

Load

Opens the Load Memory Dialog (see “Load Memory Data” on page 52).

Auto Refresh

Opens the Auto Refresh Dialog where the editor’s refresh rate can be edited (see
“Periodic Update” on page 88).

Toolbar
Toggles the display of the window’s toolbar.

4.11.9 Pasting Of Clipboard Content

The current clipboard content can be pasted into the Memory Window’s text section
at the cursor position by pressing the hotkey Ctrl+V.

4.11.10 Multiple Instances

Up to 4 distinct Memory Windows can be added to the Main Window. The Memory
Window is the only debug information window that can be added multiple times to
the Main Window.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

90

CHAPTER 4

412 Register Window

4.12.1

Ozone’s Register Window displays the core,
peripheral and FPU registers of the selected
MCU.

Table Window

The Registers Window shares multiple fea-
tures with other table-based debug infor-
mation windows provided by Ozone (see
“Table Windows” on page 41).

4.12.2 SVD Files

The Register Window relies on System View
Description files (*.svd) that describe the
register set of the selected MCU. The SVD
standard is widely adopted — many MCU
vendors provide SVD register set descrip-
tion files for their MCUs.

Core, FPU and CP15 Registers

Ozone ships with an SVD file for each sup-
ported ARM architecture profile. When users
select an MCU within the debugger, the reg-
ister window is automatically initialized with
the proper SVD file so that core, FPU and
CP15 registers are displayed correctly.

Peripheral Registers

The SVD file describing the peripheral regis-
ter set of the selected MCU must be speci-
fied manually. For this purpose, the user
action Project.AddSvdFile is provided (see
“Project.AddSvdFile” on page 185). Ozone
does not ship with peripheral SVD files out
of the box; users have to obtain the file
from their MCU vendor.

4.12.3 Register Groups

The Register Window partitions MCU registers into four different groups:

Ozone User Guide (UM08025)

Current CPU Registers

Debug Information Windows

o All CPU Regs
R Peripherals

Marne I'-.-'alue
= = Curr, CPU Reqgs Sy=z Mode
RO Ox00000005
R1 Ox0000000a0
R Ox0000000z
R3 Ox000000a0
R4 Ox00000002
RS Ox00000005
Ri& Ox00o00ooaon
R7 Ox00oo0ooaon
R Ox000000a0
R4 O=x0000aoan
R10 Ox00o00ooaon
k11 Ox00oo0ooaon
R1z Ox000000a0
R13 Ox20000ES4
R14 0x05000425
R15 0x08000FD&
APPSR Ox00 [(nzowdg)
[E ERSR Ox04000 (T
ICIIT HighBits b'00
ICIIT LowBiks b'o0o0oo
T b'l
IPSR O=x000
Prifdask.]
BasePri =00
FaultMask. 0x0
Control 0x0 (f£sn)
CycleCount 0x0000Z2 146

CPU registers that are in use given the current operating mode of the MCU.

All CPU Registers

All CPU registers, i.e. the combination of all operating mode registers.

FPU Registers

Floating point registers. This category is only available when the MCU possesses a

floating point unit.

CP15 Registers

Coprocessor-15 registers. This category is only available when the MCU core contains

a CP15 unit.
Peripheral Registers

Memory mapped registers. This category is only available when a peripheral register
set description file was specified. (see “SVD Files” on page 90).

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

www.keil.com/cmsis/svd
www.keil.com/cmsis/svd

o1

4.12.4 Bit Fields

<7 A register that does not contain a single value but rather one or multiple bit fields

can be expanded or collapsed within the Register Window so that its bit fields are
shown or hidden. Bit fields can be edited just like normal register values.

Flag Strings

A bit field register that contains only bit fields of length 1 (flags) displays the state of
its flags as a symbol string. These symbol strings are composed in the following way:
the first letter of a flag’s name is displayed uppercase when the flag is set and lower-
case when it is not set.

Editable Registers and Bit-Fields

Both registers and bit fields that are not marked as read-only within the loaded SVD
file can be edited.

4.12.5 Processor Operating Mode

An ARM processor’s current operating mode is displayed as the value of the current
CPU registers group (see the figure on page 68). An ARM processor can be in any of
7 operating modes:

USR SVC ABT IRQ FIQ SYS UND

User Supervisor | Abort Interrupt Fast Interrupt | System | Undefined

Table 4.25. ARM processor operating modes

4.12.6 Context Menu

The Register Windows’ context menu provides the
following actions: €] Miew Source Chrh+
View Source 'EE ‘Wiew Disassembly Ctr:+D

. . - . . s| Wiew Dat Chrl+T
Displays the source code line affiliated with the regis- Lis] HEW At '
ter value (interpreted as instruction address). Display As "
View Disassembly Display All As *
Displays the disassembly at the register value. Expand Al Shift -t
View Disassembly [Collapse Al Shift-+-
Displays the memory at the register value (inter- i |
preted as memory address). = Find Name. .. A
Display (All) As
Sets the display format of the selected item or the whole window.
Expand / Collapse All

Expands or collapses all top-level nodes.

Find Name
Scrolls to and selects a particular register.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

92 CHAPTER 4 Debug Information Windows

4.13 Source Files Window

Ozone’s Source Files Window lists the source files that were used to generate the
application program.

SourceFiles £l
File # | Status Path I Address Range I;I
IJSE_05_embis.c |3 compiled Cifwork/Projects/)5cope/ExamplesfemIDE/SEGGE 0806A030-0S0641EE
wirkfile,c || included C: fwaorkfProjects) 15cope) Examples/emIDESEGGE
wirtFile.h || inchuded s hwork/Projects) JScope/ExamplesemIDESEGGE
Webserver,c |3t compilled Cifwork/Projectsf)5cope/Examples/emIDEfSEGGE 08064E30-08065F30 —
core_cmd.h | compiled SetupfCareSuppartfcare_cme. b N3066EE0-08069ECE j

Figure 4.26. Source Files Window

4.13.1 Table Window

The Source Files Window shares multiple features with other table-based debug
information windows (see “Table Windows” on page 41).

4.13.2 Source File Information

The Source Files Window displays — alongside the file name and path — the following
additional information about source files:

Status

Indicates how the compiler used the source file to generate the application program.
A source file that contains program code is displayed as a "compiled” file. A source
file that was used to extract type definitions is displayed as an "included" file.

Address Range

Memory address range covered by the source file’s program code.

4.13.3 Unresolved Source Files

A source file that the debugger could not locate on the file system is indicated by a
yellow icon within the Source Files Window. Ozone supplies users with multiple
options to locate missing source files (see “Locating Missing Source Files” on
page 131).

4.13.4 Context Menu

The context menu of the Source Files Window adapts to the

selected file L[] Cpen File Space

Open File

Opens the selected file in the Source Viewer. The same can be achieved by double-
clicking on the file. See “Source Viewer” on page 62.

Locate File

Opens a file dialog that lets users locate the selected file on the file system. This con-
text menu is displayed when the selected source file is missing.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

4.14 Local Data Window

Ozone’s Local Data Window displays the local symbols (variables and function param-
eters) of a function.

A
Marme o I Yalue I Location I Size | Type o
4| acBuffer "printf Test: %.3c, OxZ0000854 char [&4]
=| BufferDesc OxZ00005870 20 struct SEGGER_RTT F
+ pBuffer 0xZ0000884 "princf Test: %, 0xZ0000870 4 char*

& BufferSize &4 0xZ00005874 4 int

it = 0xZ0000272 4 int

Feeturnialue E OxZ0000870 4 int

RTTEUfferlndex 2 QOxZ00005850 4 uint -
J | o]

Figure 4.27. Local Data Window

4141 Table Window

The Local Data Window shares multiple features with other table-based debug infor-
mation windows provided by Ozone (see “Table Windows” on page 41).

4.14.2 Call Site Symbols

The Local Data Window allows users to inspect the local variables of any function on
the call stack. To change the Local Data Window’s output to an arbitrary function on
the call stack, the function must be selected within the Source Viewer or the Call
Stack Window. Once the program is stepped, output will switch back to the current
function.

4.14.3 Auto Mode

The Local Data Window provides an "auto mode" display option; when this option is
active, the window displays all global variables referenced within the current function
alongside the function’s local variables. Auto mode is inactive by default and can be
toggled from the window’s context menu.

4.14.4 Data Breakpoint Indicator

A breakpoint icon preceding a local variable’s name indicates that a data breakpoint
is set on the variable.

4.14.5 Context Menu

The Local Data Window’s context menu provides _
the following actions: Clear Data Breakpoint F3
. & EditData B ink F&
Set / Clear Data Breakpoint o : a Breakpoln |
Whiat CEr-h
Sets a data breakpoint on the selected symbol or W Watc '
clears it (see “Data Breakpoints” on page 122). c| ¥iew Saurce Chrl+L
Edit Data Breakpoint || Wiew Data Chrl+T
Opens the Data Breakpoint Dialog (see “Data I .
Breakpoint Dialog” on page 49). =Py
Display all As v
Watch
Adds the selected local variable to the Watched 1) ellper] Shift+-
E:;ae 9Vg/;ndow (see “Watched Data Window” on Auko Mode

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

94

CHAPTER 4 Debug Information Windows

View Source

Displays the source code declaration location of the selected local variable in the
Source Viewer (see “Source Viewer” on page 62).

View Data

Displays the data location of the selected local variable in either the Memory Window
(see “Memory Window” on page 87) or the Register Window (see “Register Window”
on page 90).

Display (All) As

Changes the display format of the selected symbol or of all symbols (see “Display
Format” on page 36).

Expand / Collapse All

Expands or collapses all top-level nodes.

Auto Mode

Specifies whether the "auto mode" display option is active (see “Auto Mode” on
page 93).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

95

4.15 Global Data Window

Ozone’s Global Data Window displays the global variables defined within the applica-
tion program.

o
Mame | Walue Location Size I Type ﬂ
+ _acDownBuffer OxZ0000422 16 char [1&]
+ _acllpBuffer "SEGGER Real-Time-Termi OxZ00000A8 1024 char[1024]

_BaseAddr E OxZ00004D0 | 4 uint

_ionk 10 O0xZ00004F0 4 volatile int

_IsInited 1z Oxz0000408 4 int
+ _pfEthISRHandler 0x0 Oxz00004ES 4 woidi()* .
. PN Tt o) N o AP Mar [aETarAnintnlnl: N ndnd A EECEN AL
] ol

Figure 4.28. Global Data Window

4.15.1 Table Window

The Global Data Window shares multiple features with other table-based debug infor-
mation windows provided by Ozone (see “Table Windows” on page 41).

4.15.2 Data Breakpoint Indicator

A breakpoint icon preceding a global variable’s name indicates that a data breakpoint
is set on the variable.

4.15.3 Context Menu

The Global Data Window’s context menu provides
the following actions: Clear Data Breskpoint — F9
. & EditData B ink F&
Set/Clear Data Breakpoint @ : Breakpoin |
. Whiat CErl4-i
Sets or clears a data breakpoint on the selected glo- W watc '
bal variable (see “Data Breakpoints” on page 122). c| Wiew Source Chrl+L
Edit Data Breakpoint %] view Data Chrl+T
Opens the Data Breakpoint Dialog (see “Data Break- Disolay £, .
point Dialog” on page 49). SRl e
Display all As *
Watch
Adds the selected global variable to the Watched B e

Data Window (see “Watched Data Window” on page 96).

View Source

Displays the source code declaration location of the selected global variable in the
Source Viewer (see “Source Viewer” on page 62).

View Data

Displays the data location of the selected local variable in either the Memory Window
(see “Memory Window” on page 87) or the Register Window (see “Register Window”
on page 90).

Display (All) As

Changes the display format of the selected global variable or of all global variables
(see “Display Format” on page 36).

Expand / Collapse All

Expands or collapses all top-level nodes.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

96 CHAPTER 4 Debug Information Windows

4.16 Watched Data Window

Ozone’s Watched Data Window tracks the values of C-style expressions that the user
chose for explicit observation.

Watched Data |
Excpression P I'u'alue IL-:u:atiu:un ISize IReFresh |T3-'|:|e |

+ 05_Global OxZ0000000 72 Z H= struct 0% _GLOEAL STRUCT
05 _Global. Time = 0x1000 0x0 const 4 Z Hz imt
StackHP[3] 0xCDCLCDCD Ox2000008% | 4 E Hz int

Figure 4.29. Watched Data Window

4.16.1 Table Window

The Watched Data Window shares multiple features with other table-based debug
information windows provided by Ozone (see “Table Windows” on page 41).

4.16.2 Expressions

The Watched Data Window is provided to evaluate and monitor arbitrary C-style
expressions (see “Expressions” on page 152). An expression can be watched, i.e.
added to the Watched Data Window, in any of the following ways:

e Via the context menu item "Watch" of any symbol window.
e Via the user action Window.Add (see “Window.Add” on page 169).
e By dragging a symbol onto the window.

4.16.3 Live Watches

The Watched Data Window supports live updating of hosted expressions while the
program is running when the employed MCU supports background memory access.
Each expression can be assigned an individual update frequency via the windows
context menu or programatically via user action Edit.RefreshRate (see “Edit.Refresh-
Rate” on page 167).

4.16.4 Variable Scope

A local variable that is out of scope, i.e. whose parent function is not the current
function, displays the location text "out of scope” within the Watched Data Window.
The same text is also displayed for variables whose data location cannot be resolved.

4.16.5 Watch Dialog x|

The Watch Dialog provides a graphical facility to add Expression
expressions to the Watched Data Window. The dialog
can be accessed from the context menu. I

Ik Cancel |

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

97

4.16.6 Context Menu

The Watched Data Window’s context menu pro-

vides the following actions: K Remove Del
lear Data Breakpoint Fa
Remove - £
. . " Edit Data Breakpoink Fa
Removes an expression from the window.
Set / Clear Data Breakpoint le| View Source Crhu
Sets a data breakpoint on the selected expression [is] View Data Ctri+T
or clears it (see “Data Breakpoints” on page 122). Display s R
Edit Data Breakpoint Display All As ’
Opens the Data Breakpoint Dialog (see “Data Refresh Rate r
Breakpoint Dialog” on page 49).
. 5 Callapse Al Shift+-
View Source
Displays the source code declaration location of @ Watch... Alt++
the selected variable in the Source Viewer (see <7 Clear Alt+Del

“Source Viewer” on page 62).

View Data

Displays the data location of the selected variable
in either the Memory Window (see “Memory Window” on page 87) or the Register
Window (see “Register Window” on page 90).

Display (All) As

Changes the display format of the selected item or of all items (see “Display Format”
on page 36).

Refresh Rate

Sets the refresh rate of the selected expression (see Live Watches on page 96).

Expand / Collapse All

Expands or collapses all top-level nodes.

Watch
Opens the Watch Dialog (see “Watch Dialog” on page 96).

Clear
Removes all items from the Watched Data Window.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

98 CHAPTER 4 Debug Information Windows

417 Terminal Window

Ozone’s Terminal Window provides bi-directional text 10 between the debugger and
the application program (debugee).

Terminal |

>> Output via 3W0 active
printf wvia 3W0 test
printf wia 5WO test

= Bemihosting I0 inactiwe

Debug. Stark();|

Figure 4.30. Terminal Window

4.17.1 Supported IO Techniques

The Terminal Window supports three communication techniques for transmission of
textual data from the debugger to the debugee and vice versa that are described in
Program Output on page 130.

4.17.2 Terminal Prompt

The Terminal Window’s command prompt is used to reply to Semihosting or RTT user
input requests and to send textual data to the application program. The terminal
prompt is located at the bottom of the Terminal Window.

4.17.3 Context Menu

The Terminal Window’s context menu provides

the following actions: 4] Copy Chrl+-C
Copy Select Al Chrl+i
Copies the selected text to the clipboard. < Clear Alt+Del
Select All v Capture SWO

Selects all text lines. Capture Real Time 10

Clear Capture Semihosting I

Clears the Terminal Window. top Configure. .. Chrl4+-Alk+C
Capture SWO

Indicates whether the Terminal Window captures text messages that are output by
the debugee via the SWO interface.

Capture Real Time IO

Indicates whether the Terminal Window captures text messages that are output by
the debugee via SEGGER’s RTT technique.

Capture Semihosting 10

Indicates whether the Terminal Window listens to the debugee’s Semihosting
requests.

Configure
Opens the Terminal Settings Dialog (see “Terminal Settings Dialog” on page 59).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

99

4.17.4 Asynchronous User Input

Typically, the application program will request user input via the Semihosting or the
RTT technique upon which users reply via the terminal prompt. However, textual data
can also be send to the application program when there is no pending input request.
In this case, the text will be stored at the next free RTT memory buffer location. RTT
thus enables the application program to process asynchronous user input.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

100 CHAPTER 4 Debug Information Windows

4.18 Timeline Window

Ozone’s Timeline Window visualizes the course of the program’s call stack over time.

4
oo x| # =)

¥ [1G0149) |

Syer Nick_Handar

| _SetDta |
""ﬂﬂ eq| Par|feg| Par| feg| Par e-;|| _WritePara_Elea |eu;|
I

_SetRect

| _FillRect
| _DrawHLine
nd | _YNC_DrawHLine

| T111] beadotorz] | | LCD_DrawHLine

_DrawEitmap
GUI_DrawBitmap
MainTask.

-180z00 -1530100 -180000 -179900 -179300 179700 -
4 I E

Figure 4.31. Timeline

4.18.1 Requirements

The hardware requirements for the Timeline Window are the same as those for
instruction tracing (see "Hardware Requirements"” on page 69). In order to obtain a
consistent output when debugging multi-threaded applications, an OS-awareness-
plugin must have been specified (see "RTOS-Awareness-Plugin” on page 114). When
no program download is performed on debug session start, the J-Link firmware’s
trace cache must be initialized manually in order for instruction tracing to work cor-
rectly (see "Initializing the Trace Cache" on page 132).

4.18.2 Overview

Each call frame of the timeline stack resembles a function invocation. A call frame
starts at a particular instruction index and ends at a greater instruction index. The
difference is the amount of instructions executed between entry to and exit from the
function. The current program execution point (PC) is located at the right side of the
timeline plot at instruction index O. Instruction indexes grow negative to the left and
are displayed on bottom of the timeline plot.

4.18.3 Exception Frames

An exception handler or interrupt service routine frame is painted with rounded cor-
ners and a deeper color saturation level (see "SysTick_Handler" in Figure 4.31).

4.18.4 Frame Tooltips

When the mouse cursor is hovered over a call frame of the timeline plot, a tooltip
pops up that informs about the amount of instructions encompassed by that frame.

4.18.5 Zoom Cursor

The zoom cursor is indicated by a triangular handle on top of it (see Figure 4.31). It
marks the instruction that is kept window-centered whenever the horizontal scale of
the timeline plot is changed. By first setting the zoom cursor on a particular timeline

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

101

position and then scrolling the mouse wheel, users can quickly and precisely zoom
into the call stack context of the selected instruction. The instruction index of the
zoom cursor is displayed on top of it.

4.18.5.1 Positioning the Zoom Cursor

The zoom cursor can be positioned by:

e clicking on the timeline plot

e dragging the triangular handle
e pressing the left or right arrow key (+/- 1 instruction)
e pressing the page up or page down key (+/- 1/10 div)
e pressing the home or end key

The timeline plot automatically shifts left or right in order to keep the zoom cursor
visible at all times.

4.18.6 Backtrace Highlighting

Whenever the position of the zoom cursor changes, the selected instruction is shown
and highlighted within Ozone’s code and instruction windows. Users thus get com-
plete insight into the source code, disassembly and call stack context of any instruc-
tion that is selected within the timeline.

Instruckion Trace

020002n0 MOV
0200020z EL

|| x

B2, #0 mwmowvs rz, #0O
“memory set> ;S0003EZZ2 bl

—| memary_set 3
083000322 CHMP RO, Bl cmp r0, rl
0s000324 EEQ “memory_set=+0xh ;E0003EZC
020003ZC BX LE bx 1r -
II I 3
Disassembly =
hx 1r _:J
og0003z0 4770 B LE
Iﬂ.EIﬂ.DrY_SEt-
og0003z2 438 CHMF RO, B1
heg 1f
02000324 Looz EEN SWELOrY_S
Timneline x
2w ¥ @ ©
Y
-| | memory_sek
_skart
-26 -24 -2e

[

Fhurnb_crkd, s X\{STMSEFﬂtxx_Startup.s XY

File Scope

ETE [bne lhb

273 :

74 [+ bx 1r

ETE

ey -thunb func

Z77 memory set:

278 [H cmp rd, rl

T3 [beg 1f

a0 [+ strbh rE, [r0]

281 [H adds r0O, r0O, #1

£82 [+ b memory_set

g =jc :

84 [+ bx 1lr

Z8E

Z8& F¥ default C/C++ library helyp
a7

ZEg .macro HELPER helper name
289 .section .text ‘helper name,
90 -global “helper name
Z31 -weak ‘helper nhame

E9E ‘helper name:

293 -thumb func

£94 - erdm

EQE

b=l

HELPER __ aeahi read tp

| CPU halked

Figure 4.32. The timline cursor is synchronized with Ozone’s code and instruction windows.

The default color used for backtrace highlighting is yellow and can be adjusted via
the user action Edit.Color (see “Edit.Color” on page 166) or via the User Preference
Dialog (see “User Preference Dialog” on page 44).

4.18.7 Automatic Reload

The Timeline Window automatically reloads instruction trace data in a manner such
that the timeline always fills the whole window. The total amount of instructions that
can be displayed within the Timeline Window is currently limited to 10 million instruc-

tions.

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

102 CHAPTER 4 Debug Information Windows

4.18.8 Panning

The timeline plot can be shifted horizontally or vertically by using the scrollbars or by
clicking on a window position and dragging the clicked position to a new location.

4.18.9 Zooming

The horizontal scale of the timeline plot is given as the amount of instructions that fit
between adjacent grid labels (time per div). The "time per divisor" can be increased
or decreased in any of the following ways:

e by scrolling the mouse wheel up or down
e by using the drop-down list displayed within the toolbar
e by using the plus and minus buttons displayed within the toolbar

The vertical scale of the timeline plot is fixed.

4.18.10 Task Context Highlighting

Instruction blocks that were executed by different threads of the target application
are distinguishable through the window background color. The task context highlight-
ing feature requires an OS-awareness-plugin to have been specified (see "RTOS-
Awareness-Plugin” on page 114).

4
oy = # =
¥ =30y 4

O5_ChangeTask_YFP |
FPandSle Handiar
05 _SwitchAFterISR_Cartexts [PandS\ Handler [Enabld
05 _InsertTask 05 _SkartTask, | IP_Logf
MainTask. IP_Task.
-2340160 -2340150 2340140 2340130 2340120 -
K [;Ij

Figure 4.33. Task Context Highlighting.

4.18.11 Context Menu

The Timeline window’s context menu hosts a single
action: Goka end of __cmain 4+

Goto skark of _ crnain Chrl+-
Goto start / end of frame -

Positions the zoom cursor on the first/last instruction fzato Mext Function
of the selected frame and scrolls the zoom cursor into Goko Previous Funckion
view.

Goto next/previous of frame

Positions the zoom cursor on the first/last instruction of the previous/next frame and
scrolls the zoom cursor into view.

4.18.12 Toolbar

The Timeline Window’s toolbar hosts a drop-down list and two buttons that can like-
wise be used to control the horizontal scale of the timeline plot.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

103

4.19 Data Graph Window

Ozone’s Data Graph Window traces the values of expressions over time (see "Expres-
sions" on page 152).

4.19.1 Overview

The Data Graph Window employs SEGGER’s High Speed Sampling (HSS) feature to
trace the values of user-defined expressions at time resolutions of up to 1 microsec-
onds. Sampling of expressions starts automatically each time the program is
resumed and stops automatically each time the program halts. Users simply have to
add expressions to the window, similarly to the use case of the Watched Data Win-
dow. For further information on HSS, please consult the J-Link user manual.

4.19.2 Requirements

The Data Graph Window requires the connected MCU to support background memory
access (BMA).

4.19.3 Window Layout

The Data Graph Window features three content panes — or views (3) — of which only
one is visible at any given time. The view can be switched by selecting the corre-
sponding tab within the tabbar (1). In addition, a toolbar (2) is provided that pro-
vides quick access to the most important window settings.

Data Graph ﬂ
I,f Setup “nu" raphs “'u" Samples “'.1 |I| 1 kHz LI 200 ms [Div j Clear On Resume LI @ @

Expression -~ |Type |value |Min |Max |Average [# Changes |Min. Change | Max. Change 3
Warl uint 132 o zE4 176.05 524 —z4g 10

Varl % 150 uint 12E u} 148 gL 13E Ezd -1l40 10

b

Figure 4.34. Data Graph Window Layout

4.19.4 Setup View

The Setup View allows users to assemble the list of expressions whose values are to
be traced while the program is running (see "Expressions"” on page 152). An expres-
sion can be added to the list in any of the following ways:

e via the Setup View’s context menu entry Add Symbol.

e via user action Window.Add (see “Window.Add” on page 169).

< via the last table row that acts as an input field.

e by dragging a symbol from a symbol window or the source viewer onto the Data
Graph Window.

and removed from the list via:

e the window’s context menu entry Remove.
e user action Window.Remove (see “Window.Remove” on page 169).

Please note that only expressions that evaluate to base data types of size less or
equal to 8 bytes can be added to the list.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

104 CHAPTER 4 Debug Information Windows

4.19.4.1 Signal Statistics

Next to its editing functionality, the Setup View provides basic signal statistics for
each traced expression. The meanings of the displayed values are explained below.

Min, Max, Average

Minimum, maximum and average signal values.

#Changes

The amount of times the signal value has changed between two consecutive samples.
Min. Change

The largest negative change between two consecutive samples of the symbol value.

Max. Change
The largest positive change between two consecutive samples of the symbol value.

4.19.4.2 Context Menu

The context menu of the Setup View provides the fol-

lowing actions: # Bemove Del
Remove Display &s b
Removes an expression from the window. Display Al A= g
Display (All) As € addsymbol... A+
Allows users to change the display format of the <7 Remove Al Alt+Del
selected expression or all expressions.

Clear Data Ckel+R
Add Symbol

Opens an input box that lets users add an expression to
the window.

Remove All
Removes all expression from the window.

Clear Data
Clears the HSS sampling data, i.e resets the window to its initial state.

4.19.4.3 Shared Table Features

The Setup View shares multiple features with other table-based debug information
windows provided by Ozone (see “Table Windows” on page 41).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

105

4.19.5 Graphs View

The Graphs View displays the sampling data as graphs within a two dimensional sig-
nal plot. The signal plot provides multiple interactive features that allow users to
quickly understand the time course of expressions both at a broad and at a narrow

time scale.
Data Graph #|
[Setup “;U(izraphs “n,“f' Samples 1 kHz ;I S0ns | Diw ;I Clear On Resurme j + (=)
k4 i Legend
200 i ¥ M var1
: + M varl = 150
E—I_I_l_r
1
Z00 =
! (132
i
100 i
,.--""'_HI ==
T
a !
47E0ms 42 E0ms [4550 } 5.047 000 = E1EDm=s EZEDn
K1 i

Figure 4.35. Graphs View

4.19.5.1 Plot Scaling

The scale of the signal plots x-axis (time scale) is given as the time-distance between
adjacent vertical grid lines (time per div). The "time per divisor" can be increased or
decreased in any of the following ways:

e by scrolling the mouse wheel up or down
e by using the drop-down list displayed within the toolbar
< by selecting a time scale via the window context menu

Vertical Auto Scaling

The scale of the y-axis cannot be modified. Instead, the y-axis auto-scales at all
times so that all visible graphs fit completely into the available vertical window
space.

4.19.5.2 Zoom Cursor

The zoom cursor is indicated by a triangular handle on top of it. It marks the time
position that is kept window-centered whenever the time scale of the signal plot is
adjusted. By first setting the zoom cursor on a particular point in time and then
scrolling the mouse wheel, users can quickly and precisely zoom into a region of the
signal plot. The zoom cursor can be positioned by left-clicking on the signal plot or by
dragging the triangular handle. The sample index affiliated with the zoom cursor is
displayed on top of it.

4.19.5.3 Plot Legend

The plot legend links each signal graph to its affiliated Legend

expression. The legend can be moved around the plot by Il et
dragging its title bar. The context menu of the plot legend 7 M varz % 10
allows users to select individual graphs for display and to B 05_cGlobal. Time

adjust the display colors of graphs. Checkboxes are pro-
vided to toggle the display of individual graphs.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

106 CHAPTER 4 Debug Information Windows

4.19.5.4 Timeline

The signal plot displays a vertical timeline below the mouse !

cursor that updates its position whenever the mouse is moved S dec: FF3IZ309
over the plot. At the intersection point of the timeline with each { |hex: FSFEAD
graph, a value box is displayed that indicates the graph’s signal i (t: 0.205:433 =
value at the timeline position. Each value box has got an '

expansion indicator that can be clicked to show or hide the

value box.

4.19.5.5 Mouse Panning

The x-Axis-origin of the signal plot can be displaced by clicking on the plot and then
dragging the clicked position to the left or to the right.

4.19.5.6 Context Menu

The context menu of the Graphs View provides the fol-

lowing actions: Samling e '

i Time Scale k
Sampling Frequency Clet Bl ,
The frequency at which all expressions are sampled (see
"Sampling Frequency" on page 108). Draw Points
Time Scale I Goto Time. . Ckrl+G
Time scale used to plot the graphs of expressions (see Clear Data Chrl+R
"Time Scale" on page 108). # Export... CHHE
Clear Event
The debugging event upon which HSS sampling data is
cleared (see "Clear Event" on page 108).

Draw Points

When checked, sampling data is visualized as points instead of continuous signal
graphs.

Goto Time

Opens an input dialog that allows users to set the zoom cursor on a particular time
position.

Export

Opens a file dialog that allows users to export the sampling data to a CSV file.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

107

4.19.6 Samples View

The Samples View displays the sampling data in a tabular fashion. Following two col-
umns that display the index and timestamp of a sample, the remaining columns dis-
play the values of each traced expression at the time the sample was taken.

Data Graph ﬂ
[Setup /" Graphs '\”,f 5~3Fﬂlil|l35\".l 1kHz j 50 ms | Div ;I Clear On Resume LI =+ =
Index < | Time | vart | wart % 150 | =]
2174 2.172 280 = l44 l44
2175 Z.174 273 = 144 144 =
Z176 Z.175 978 = 144 144
2177 Z.176 979 = 144 144
z1ve E.178 017 = 144 144 j

Figure 4.36. Samples View

4.19.6.1 Context Menu

The context menu of the Samples View provides the fol-

lowing actions: I+ Goko Time... Chri4G
Goto Time = Export... Ckrl+E

Opens an input dialog that allows users to set the zoom
cursor on a particular time position.

Export
Opens a file dialog that allows users to export the sampling data to a CSV file.

4.19.6.2 Selection Behaviour

When the user selects a sample within the samples list, the zoom cursor is moved to
the affiliated time position. This means that after switching back to the Graphs View,
users may conveniently zoom into the time region of the selected sample.

4.19.6.3 Shared Table Features

The Samples View shares multiple features with other table-based debug information
windows provided by Ozone (see “Table Windows” on page 41).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

108 CHAPTER 4 Debug Information Windows

4.19.7 Toolbar

The Data Graph Window’s toolbar provides quick access to the most important win-
dow settings (see Figure "Data Graph Window Layout"™ on page 103). The settings
affiliated with each toolbar element are described below, going from left to right on
the toolbar.

4.19.7.1 Sampling Frequency

All expressions added to the Data Graph Window are sampled together at the same
points in time. This common sampling frequency is stored as Ozone’s system variable
"VAR_HSS_ SPEED". In addition to the Data Graph Window’s toolbar and context
menu, the sampling frequency can also be edited via the System Variable Editor (see
"System Variable Editor" on page 48) or programatically via user action Edit.SysVar
(see "Edit.SysVar" on page 165).

4.19.7.2 Time Scale

The time scale input box allows users to adjust the signal plot’s x-axis scale. The
time scale is given as the time distance between adjacent vertical grid lines (time per
div). The "+" and "-" buttons on the right side of the toolbar can be used to increase
or decrease the time scale as well.

4.19.7.3 Clear Event

The toolbar’s "clear event"” input box selects the debugging event upon which all HSS
sampling data is automatically cleared. The available options are:

Clear On Resume

Sampling data is cleared when program execution resumes or when the program is
reset.

Clear On Reset
Sampling data is cleared when the program is reset.

Clear Never

Sampling data is never cleared automatically.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

109

4.20 Find Results Window

Ozone’s Find Results Window displays the results of previous text searches.

FindResults £

Find all 'printf', 3how filepaths, Current Document

C:/Examples/SWU0_STM32F103 MBA7Z TAR/Application/Start LEDBElink.c(53): printf(Fr
C:/Examples/3W0_3TM3ZF103_ME6T: TAR/Application/3tart LEDElink.c(54): printfiin
C:/Examples/SWU0_STM32F103 MBA7Z TAR/Application/Start LEDBElink.c(58): printf (I

Matching Lines: 3

1| | _'I

Figure 4.37. Find Results Window

4.20.1 Search Results

The Find Results Window displays the results of text searches as a list of source code
locations that matched the search string. The search settings itself are displayed in
the first row of the search result text.

4.20.2 Find Dialog

A new text pattern search is performed using the Find Dialog (see “Find Dialog” on
page 53).

4.20.3 Context Menu

The Find Results Window’s context menu provides the fol- |

lowing actions: L] Copy Chrl+C
| Show in Editor Space

Copy =

Copies the selected text to the clipboard. Select Al Chrl+A

Show In Editor & Clear Al

Displays the selected match result in the Source Viewer. The same operation is per-
formed by double clicking on a match result.

Select All

Selects all text lines.

Clear
Clears the Find Results Window.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

110 CHAPTER 4 Debug Information Windows

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

111

Chapter 5
Debugging with Ozone

This chapter explains how to debug an embedded application using Ozone’s basic and
advanced debugging features. The chapter covers all activities that incur during a
typical debugging session — from opening the project file to closing the debug ses-
sion.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

112 CHAPTER 5 Debugging with Ozone

5.1 Debugging Work Flow

Table 5.1 summarizes the debugging work flow. Phases 1 and 2 are executed once
while phases 3 and 4 are executed repeatedly until the bug is found. Ozone’s imple-
mentation of each phase of the debugging work flow is discussed in separate sections
of this chapter. The chapter starts by explaining how to work with Ozone project files.

Debugging Work Flow Phase Described in sections...
Phase 1: Opening or creating a project 5.2-5.3

Phase 2: Starting the debug session 5.4

Phase 3: Modifying the program’s execution point 55-57

Phase 4: Inspecting the program state 5.8 -5.14

Table 5.1. Debugging work flow

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

113

5.2 Projects

A Ozone project (.jdebug) stores settings that configure the debugger so that it is
ready to debug an application program on a particular hardware setup (microcontrol-
ler and debug interface). When a project is opened or created, the debugger is ini-
tialized with the project settings.

5.2.1 Project File Example

lllustrated below is an example project file that was created with the Project Wizard
(Project Wizard on page 23). As can be seen, project settings are specified in a C-like
syntax and are placed inside a function. This is due to the fact that Ozone project
files are in fact programmable script files. Chapter 6 covers the scripting facility in
detail.

/***************************************'k'k****'k***********************
*

* OnProjectLoad

*

* Function description

* Executed when the project file is opened. Required.
*

EE IR R S S S S R I SR I S S I S I kS I R I I S S R S I R R I 2 I I R S A R S I R b I A I S I I S R R S I S I S S k]
*/
void OnProjectLoad (void) {

Project.SetDevice ("STM32F103ZE") ;

Project.SetHostIF ("USB", "0");

Project.SetTargetIF ("SWD");

Project.SetTIFSpeed ("2 MHz");

File.Open ("C:/Examples/Blinky_STM32F103_Keil/Blinky/RAM/Blinky.axf");

}

Figure 5.2. Basic project file

5.2.2 Opening Project Files

A project file can be opened in any of the following ways:
e Main Menu (File® Open)
e Recent Projects List (File® Recent Projects)

e Hotkey Ctrl+0O
e User action File.Open (see “File.Open” on page 160)

5.2.3 Creating Project Files

A project file can be created manually using a text editor or with the aid of Ozone’s
Project Wizard (see “Project Wizard” on page 23). The Project Wizard creates mini-
mal project files that specify only the required settings.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

114 CHAPTER 5 Debugging with Ozone

5.2.4 Project Settings

Any user action that configures the debugger in some way is a valid project setting —
this also includes user actions that alter the appearance of the debugger (see "User
Actions" on page 28).

5.2.4.1 Specifying Project Settings

Project settings are specified by inserting user action commands into the obligatory
script function "OnProjectLoad" (see Figure 5.2 on page 113).

5.2.4.2 Program File

The application program (debugee) can be specified via the user action File.Open.
The file path argument can be specified as an absolute path or relative to the project
file directory, amongst others (see “File.Open” on page 160). Furthermore, please
consider section 1.2.2 for the list of supported program file types.

5.2.4.3 Hardware Settings

Hardware settings configure the debugger to be used with a particular MCU and
debug interface. The affiliated user actions belong the "Project" category (see
“Project Actions” on page 181).

5.2.4.4 RTOS-Awareness-Plugin

The user action Project.SetOSPlugin specifies the file path or name of the plugin that
adds RTOS awareness to the debugger (see “Project.SetOSPlugin” on page 183).
Ozone currently ships with two RTOS-awareness-plugins - one for SEGGER’s embOS
and one for FreeRTOS.

5.2.4.5 Behavioral Settings

Settings that modify the behaviour of debugging operations are referred to as "sys-
tem variables". System variables can be edited via the user action Edit.SysVar (see
“Edit.SysVar” on page 165).

5.2.4.6 Required Project Settings

A valid project file must specify the following settings:

Project Setting Description
Project.SetDevice The name of the employed MCU model.
Project.SetHostIF Specifies how the J-Link debug probe is connected to the Host-PC.

Project.SetTargetlF | Specifies how the J-Link debug probe is connected to the MCU.
Project.SetTifSpeed | Specifies the data transmission speed.

Table 5.4. Required project settings

5.2.5 User Perspective Files

When a project is closed, Ozone associates a user perspective file (*.user) with the
project and stores it next to the project file. The user perspective file contains win-
dow layout information and other appearance settings in an editable format. The next
time the project is opened, Ozone restores the user interface layout from the user
perspective file. User perspective files may be shared along with project files in order
to migrate the project-individual look and feel.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

115

5.3 Program Files

The program to be debugged (debugee) is specified as part of the project settings or
is opened manually from the user interface.

5.3.1 Supported File Types
Ozone supports the following program file types:

e ELF or compatible files (*.elf, *.out, *.axf)
e Motorola s-record files (*.srec, *.mot)

e Intel hex files (*.hex)

e Binary data files (*.bin)

5.3.2 Symbol Information

Only ELF or compatible program files contain symbol information. When specifying a
program or data file of different type, source-level debugging features will be
unavailable. In addition, all debugger functionality requiring symbol information —
such as the variable or function windows — will be unavailable.

Debugging without Symbol Information

Ozone provides many facilities that allow insight into programs that do not contain
symbol information. With the aid of the Disassembly Window, program execution can
be observed and controlled on a machine code level. The MCU's memory and register
state can be observed and modified via the Memory and Register Windows. Further-
more, many advanced debugging features such as instruction trace and terminal 10
are operational even when the program file does not provide symbol information.

5.3.3 Opening Program Files

When the program file is not specified as part of the project settings (using action
File.Open), it needs to be opened manually. A program file can be opened via the
Main Menu (File® Open), or by entering user action command File.Open into the Con-
sole Window’s command prompt (see “File.Open” on page 160).

Effects of opening a Program File

When an ELF- or compatible program file is opened, the program’s main function is
displayed within the Source Viewer. Furthermore, all debug information windows that
display static program entities are initialized. Specifically, these are the Functions
Window (see “Functions Window” on page 85), Source Files Window (see “Source
Files Window” on page 92), Global Data Window (see “Global Data Window” on
page 95) and Code Profile Window (see “Code Profile Window” on page 72).

5.3.4 Automatic Download

When a program or data file is opened while a debug session is running, the file con-
tents will be automatically downloaded to target memory. Please note that the file
contents will overwrite any existing program or data at the download location.

5.3.5 Data Encoding

When an ELF or compatible program file is opened, Ozone senses the program file’s
data encoding (data endianess) and configures itself for that encoding. Additionally,
the endianess mode of the attached MCU is set to the program file’s data encoding if
supported by the MCU. The MCU’s endianess mode can also be specified indepen-
dently via the J-Link-Settings-Dialog (see “J-Link Settings Dialog” on page 51).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

116 CHAPTER 5 Debugging with Ozone

5.4 Starting the Debug Session

After a project was opened or created and a program file was specified, the next step
in the debugging work flow is to start the debug session. The debug session is
started via the user action Debug.Start (see “Debug.Start” on page 175). This action
can be triggered from the Debug Menu or by pressing the hotkey F5.

5.4.1 Connection Mode

The operations that are performed during the startup sequence depend on the value
of the connection mode parameter (see “Debug.SetConnectMode” on page 176). The
different connection modes are described below.

5.4.1.1 Download & Reset Program

The default connection mode "Download & Reset Program" performs the following

operations:
Startup Phase Description
Phase 1: Connect A software connection to the MCU is established via J-Link.

Pending (data) breakpoints that were set in offline mode
are applied.

Phase 3: Reset A hardware reset of the MCU is performed.
Phase 4: Download The application program is downloaded to MCU memory.

The initial program operation is performed (see “Initial
Program Operation” on page 117).

Phase 2: Breakpoints

Phase 5: Finish

Table 5.5. Phases of the "Download & Reset Program" startup sequence

Flow Chart

Appendix 7.6 provides a flow chart of the "Download & Reset" startup sequence. This
chart can be used as a reference when reprogramming the sequence via the scripting
interface.

5.4.1.2 Attach to Running Program

This connection mode attaches the debugger to the application program by perform-
ing phases 1 and 2 of the default startup sequence (Table 5.5).

5.4.1.3 Attach & Halt Program

This connection mode performs the same operations as "Attach To Running Program"
and additionally halts the program.

5.4.1.4 Setting the Connection Mode

The connection mode can be set via user action
Debug.SetConnectMode (see “Debug.SetConnectMode”
on page 176), via the System Variable Editor (see “Sys- b Attach to Running Program
tem Variable Editor” on page 48) or via the Connection B attach & Halk Frogram
Menu (Debug® Start Debugging). The Connection Menu
is illustrated to the right.

{E.'l' Download & Resek Program

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

117

5.4.2 Initial Program Operation

When the connection mode is set to "Download & Reset Program", the debugger fin-
ishes the startup sequence in one of the following ways, depending on the reset
mode (see “Reset Mode” on page 119):

Reset Mode

Initial Program Operation

Reset & Break at Symbol

The Program is reset and advanced to a particular
function.

Reset & Halt

The program is halted at the reset vector.

Reset & Run

The program is restarted.

Table 5.6. Initial program operations

5.4.3 Reprogramming the Startup Sequence

Parts or all of the "Download & Reset Program" startup sequence can be repro-
grammed. The process is discussed in detail in "DebugStart™ on page 136.

5.4.4 \Visible Effects

When the start-up procedure is complete, the debug information windows that dis-
play MCU data will be initialized and the code windows will display the program exe-

cution point (PC Line).

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

118 CHAPTER 5 Debugging with Ozone

5.5 Execution Point

The current position of program execution is referred to as the execution point. The
execution point is identified by the memory address of the machine instruction that is
going to be executed next (PC register value).

5.5.1 Observing the Execution Point

The application program’s execution point is displayed both within the Source Viewer
and within the Disassembly Window, where it is referred to as the "PC line".

Source Viewer

The PC line can be brought into view via the window’s context menu entry "Goto PC"
or by executing the user action View.PCLine (see “View.PCLine” on page 173).

Disassembly Window

The PC line can be brought into view via the window’s context menu entry "Goto PC"
or by executing the user action View.PC (see “View.PC” on page 173).

5.5.2 Setting the Execution Point

The execution point can be set to arbitrary source code lines or machine instructions
via the user actions Debug.RunTo, Debug.SetNextStmnt and Debug.SetNextPC (see
page 178).

5.5.2.1 Debug.RunTo

Debug.RunTo advances program execution to a particular function, source code line
or instruction address, depending on the command line parameter given (see
“Debug.RunTo” on page 179). All instructions between the current PC and the desti-
nation are executed. Both code windows provide a context menu entry "Run To Cur-
sor" that advance program execution to the selected code line.

5.5.2.2 Debug.SetNextStatement

Debug.SetNextStatement advances program execution to a particular source code
line or function. The action sets the execution point directly, i.e. all instructions
between the current execution point and the destination location will be skipped (see
“Debug.SetNextStatement” on page 178)

5.5.2.3 Debug.SetNextPC

Debug.SetNextPC advances program execution to a particular instruction address.
The action sets the execution point directly, i.e. all instructions between the current
execution point and the destination execution point will be skipped.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

5.6 Debugging Controls

Ozone provides the following debugging controls that allow users to modify the pro-
gram execution point.

5.6.1 Reset

119

The program can be reset via the user action Debug.Reset (see “Debug.Reset” on
page 176). The action can be executed from the Debug Menu or by pressing F4.

5.6.1.1

Reset Mode

The reset behaviour depends on the value of the reset mode parameter (see “Reset
Modes” on page 145). The reset mode specifies which of the three initial program
operations is performed after the MCU has been hardware-reset (see “Initial Program
Operation” on page 117).

Setting the Reset Mode

The reset mode can be set via user action Debug.SetRe-
setMode (see “Debug.SetResetMode” on page 177), via
the System Variable Editor (see “System Variable Editor”
on page 48) or via the Reset Menu (Debug® Reset). The
Reset Menu is illustrated to the right. The symbol to break

[4= Reset & Ereak at Symbal
@1 Peset % Halk
[Reset & FRun

at can be specified by settings System Variable "VAR_BREAK_AT_THIS_SYMBOL".

5.6.2 Step

Ozone provides three user actions that step the program in defined ways. The debug-
ger’s stepping behaviour also depends on whether the Source Viewer or the Disas-
sembly Window is the active code window (see “Active Code Window” on page 37).
Table 5.7 considers each situation and describes the resulting behaviour.

Active Code Window

Action

Source Viewer

Disassembly Window

Debug.Steplinto

Steps the program to the next
source code line. If the current
source code line calls a func-
tion, the function is entered.

Advances the program by a single
machine instruction by executing
the current instruction (single
step).

Debug.StepOver

Steps the program to the next
source code line. If the current
source code line calls a func-
tion, the function is over-
stepped, i.e. executed but not
entered.

Performs a single step with the
particularity that branch with link
instructions (BL) are overstepped,
i.e. instructions are executed until
the PC assumes the address fol-
lowing that of the branch.

Debug.StepOut

Steps the program out of the
current function to the source
code line following the func-
tion’s call site.

Steps the program out of the cur-
rent function to the machine
instruction following the function’s
call site.

Table 5.7. Program stepping behaviors

5.6.2.1

Stepping Expanded Source Code Lines

When the Source Viewer is the active code window and the source line containing the
PC is expanded to reveal it’'s assembly code instructions, the debugger will use its
instruction stepping mode instead of performing source line steps.

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

120 CHAPTER 5 Debugging with Ozone

5.6.3 Resume

The program can be resumed via the user action Debug.Continue (see page 176).
The action can be executed from the Debug Menu or by pressing the hotkey F5.

5.6.4 Halit

The program can be halted via the user action Debug.Halt (see page 176). The action
can be executed from the Debug Menu or by pressing the hotkey F6.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

121

5.7 Breakpoints

Ozone provides many alternative ways of setting, clearing, enabling and disabling
breakpoints on machine instructions, source code lines, functions and program vari-
ables.

5.7.1 Code Breakpoints

A breakpoint that is set on a source code line is referred to as a code breakpoint.
Technically, a code breakpoint is set on the memory addresses of one or multiple
machine instructions affiliated with the source code line.

5.7.1.1 Editing Code Breakpoints

Code breakpoints can be edited within the Source Viewer (see “Source Viewer” on
page 62), within the Breakpoint Window (see “Breakpoint Window” on page 77) or
via the wuser actions Break.SetOnSrc, Break.ClearOnSrc, Break.EnableOnSrc,
Break.DisableOnSrc and Break.ClearAll (see “Breakpoint Actions” on page 158).
Source code locations are specified in a predefined format (see “Source Code Loca-
tion Descriptor” on page 142).

5.7.2 Instruction Breakpoints

A breakpoint that is set on the memory address of a machine instruction is referred
to as an instruction breakpoint.

5.7.2.1 Editing Instruction Breakpoints

Instruction breakpoints can be edited within the Disassembly Window (see “Disas-
sembly Window” on page 66), within the Breakpoint Window (see “Breakpoint Win-
dow” on page 77) or via the user actions Break.Set, Break.Clear, Break.Enable,
Break.Disable and Break.ClearAll (see “Breakpoint Actions” on page 158).

5.7.2.2 Derived Instruction Breakpoints

An instruction breakpoint that was set implicitly by Ozone 241 static woid Setd
in order to implement a source breakpoint is called a @& =4z {
derived breakpoint. As fixed part of their parent source # 0S00475E EOSZ

breakpoint, derived breakpoints cannot be cleared.
Derived breakpoints can be distinguished from user-set breakpoints by their smaller
diameter icon as depicted on the right.

5.7.3 Function Breakpoints

A breakpoint that is set on the first machine instruction of a function is referred to as
a function breakpoint.

5.7.3.1 Editing Function Breakpoints

Function breakpoints can be edited in the same way as code breakpoints but the
function name is used as argument instead of a source code location descriptor.

5.7.4 Conditional Breakpoints

Each instruction, code or function breakpoint can be assigned a trigger condition and
a trigger action that is evaluated/performed when the breakpoint is hit. The trigger
condition and trigger action are set via the Breakpoint Properties Dialog (see “Break-
point Properties Dialog” on page 50) or programatically via the user action Break.Edit
(see “Break.Edit” on page 198).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

122 CHAPTER 5 Debugging with Ozone

5.7.5 Data Breakpoints

Data breakpoints (watchpoints) monitor memory areas for specific types of 10 accesses.
When a memory access occurs that matches the data breakpoint’s trigger condition, the
program is halted. Data breakpoints can be used to monitor program variables that reside
in MCU memory.

5.7.5.1 Data Breakpoint Attributes

Data breakpoints are defined via the following attributes:

Address
Memory address that is monitored for 10 (access) events.

Address Mask

Specifies which bits of the address are ignored when monitoring access events. By
means of the address mask, a single data breakpoint can be set to monitor accesses
to several individual memory addresses. More precisely, when n bits are set in the

address mask, the data breakpoint monitors 2" many memory addresses.

Symbol

Variable or function parameter whose data location corresponds to the memory
address of the data breakpoint.

On

Indicates if the data breakpoint is enabled or disabled.

Access Type

Type of 10 access that is monitored by the data breakpoint (see “Access Types” on
page 145).

Access Size

Number of bytes that need to be accessed in order to trigger the data breakpoint
(see “Memory Access Widths” on page 145). As an example, a data breakpoint with
an access size of 4 bytes (word) will only be triggered when a word is written to one
of the monitored memory locations. It will not be triggered when, say, a byte is writ-
ten.

Match Value

Value condition required to trigger the data breakpoint. A data breakpoint will only be
triggered when the match value is written to or read from one of the monitored
memory addresses.

Value Mask

Indicates which bits of the match value are ignored when monitoring access events.
A value mask of OXFFFFFFFF disables the value condition.

5.7.5.2 Editing Data Breakpoints

Ozone provides the following facilities to set and edit data breakpoints:

Data Breakpoint Dialog

Data breakpoints are set via the Data Breakpoint Dialog (see see “Data Breakpoint
Dialog” on page 49).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

123

Data Breakpoint Window

Data breakpoints can be cleared, enabled, disabled and edited via the Data Break-
point Window (see “Data Breakpoint Window” on page 83).

User Actions

Data breakpoints can be manipulated programatically via the user actions
Break.SetOn[X], Break.ClearOn[X], Break.EnableOn[X], Break.DisableOn[X],
Break.EditOn[X], and Break.ClearAllOnData, where [X] stands for either "Data" or
"Symbol" (see “Breakpoint Actions” on page 158).

5.7.5.3 Data Breakpoint Limitations

The amount of data breakpoints that can be set, as well as the supported values of
the address mask parameter, depend on the capabilities of the selected MCU.

5.7.6 Breakpoint Implementation

The concrete way in which a breakpoint is implemented — in MCU hardware or as a
software interrupt — can be configured via the Breakpoint Properties Dialog (see
"Breakpoint Properties Dialog" on page 50), via the Breakpoint Window (see “Break-
point Window” on page 77) or programmatically via the user action Break.SetType
(see “Break.SetType” on page 196). The default breakpoint implementation type is
stored as a system variable (see “System Variable Identifiers” on page 149).

5.7.7 Offline Breakpoint Modification

All types of breakpoints can be modified both while the debugger is online and
offline. Any modifications made to breakpoints while the debugger is disconnected
from the MCU will be applied when the debug session is started.

5.7.8 Unlimited Flash Breakpoints

An unlimited number of software interrupt breakpoints in flash memory can only be
set if a valid licence for the "Unlimited Flash Breakpoints" feature has been bought
from SEGGER.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

124 CHAPTER 5 Debugging with Ozone

5.8 Program State

This section explains how users can inspect and modify the state of the application
program when it is halted at an arbitrary execution point.

5.8.1 Data Symbols

Ozone’s symbol windows allow users to observe and edit data symbols (variables and
function parameters). In addition, data symbols can be read and written programati-
cally via user actions.

Local Symbols

The Local Data Window allows users to observe and manipulate the local symbols
that are in scope at the execution point (see “Local Data Window” on page 93).

Call Site Symbols

The Local Data Window can display the local symbols of any function on the call
stack. By selecting a called function within the Call Stack Window (see “Call Stack
Window” on page 81) or within the Source Viewer (see “Source Viewer” on page 62),
the local symbols of that function are displayed.

Global Variables

The Global Data Window allows users to observe and edit global program variables
(see “Global Data Window” on page 95).

Watched Variables

Any program variable can be put under, and removed from, explicit observation via
the user actions Window.Add and Window.Remove (see “Window Actions” on
page 156). Observed variables are displayed within the Watched Data Window (see
“Watched Data Window” on page 96).

Data Locations

The register or memory location of a data symbol can be displayed by executing the
user action View.Data (see “View.Data” on page 171). The action is available from
the context menu of the symbol window. The data location of a symbol can be read or
written programatically via the user actions listed in section 5.9.

5.8.2 Function Calling Hierarchy
The hierarchy of function calls that led to the current execution point can be
observed within the Call Stack Window (see “Call Stack Window” on page 81).
5.8.3 Instruction Execution History

Ozone’s allows users to inspect the machine instructions that were executed
between two consecutive execution points (see “Instruction Trace Window” on
page 69). The user action View.InstrTrace is provided to display arbitrary positions
within the instruction execution stack (see “View.InstrTrace” on page 172).

5.8.4 Symbol Tooltips

When hovering the mouse cursor over a variable within the Source Viewer, a tooltip
will pop up that displays the variable’s value (see “Symbol Tooltips” on page 62).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

125

5.9 Hardware State

This section describes how users of Ozone can inspect and modify the MCUs hard-
ware state.

5.9.1 MCU Registers

MCU Register can be inspected and edited via Ozone’s Register Window (see “Regis-
ter Window” on page 90). The user actions Target.GetReg and Target.SetReg are
provided to allow the readout or manipulation of both core and coprocessor registers
from script functions or at the command prompt (see “Target Actions” on page 158).

5.9.2 MCU Memory

MCU memory can be inspected and edited via Ozone’s Memory Window (see “Memory
Window” on page 87). The user actions:

e Target.ReadU8
e Target.ReadU16
e Target.ReadU32
e Target.WriteU8
e Target.WriteU16
e Target.WriteU32

are provided to read and manipulate MCU memory from script functions or at the
command prompt (see “Target Actions” on page 158). These actions access memory
byte (U8), half-word (U16) and word-wise (U32).

5.9.2.1 Memory Access Width

The access width that the J-Link firmware employs when reading or writing memory
strides of arbitrary size can be specified via the user action Width (see “Target.SetAc-
cessWidth” on page 192).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

126 CHAPTER 5 Debugging with Ozone

5.10 Inspecting a Running Program

When the application program is running, program inspection and manipulation is
limited in the following ways:

Limitation Description

No register 10 Register values are not updated and cannot be edit.

Values within symbol windows are not updated and can-
not be edited.

No call stack and instruc- | The Call Stack- and Instruction Trace Windows do not
tion trace information display content.

Freezed symbol windows

Table 5.8. Limitations on program inspection while the program is running

All other features, such as terminal-10 and breakpoint manipulation, remain opera-
tional while the application program is running.

5.10.1 Live Watches

In situations where the value of a symbol or an expression needs to be monitored
while the program is running, users can resort to Ozone’s Watched Data Window (see
“Watched Data Window” on page 96). The Watched Data Window allows users to set
refresh rates between 1 and 5 Hz for each expression individually.

5.10.2 Symbol Trace

In situations where a high resolution trace of a symbol or an expression is required,
users can resort to Ozone’s Data Graph Window (see “Data Graph Window” on
page 103). The Data Graph Window supports sampling rates of up to 1 MHz and pro-
vides advanced navigation tools for exploring signal graphs.

5.10.3 Streaming Trace

When used in conjunction with a SEGGER J-Trace PRO debug probe on hardware that
supports instruction tracing, Ozone is able to update the application’s code profile
statistics continuously while the program is running. In contrast to non-streaming
trace, the trace data is recorded and sent continuously to the host PC, instead of
being limited by the trace probe buffer size. This allows "endless" recording of trace
data and real-time analysis of the execution trace while the target is running. For
use-cases of streaming trace, refer to "Advanced Program Analysis And Optimization
Hints" on page 127. For further information on streaming trace, please consult the J-
Trace PRO user manual or consult SEGGER’s homepage.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

127

5.11 Advanced Program Analysis And Optimization
Hints

This section describes use-cases of advanced program analysis using the (streaming)
instruction trace and code profiling capabilities of Ozone.

For code profiling hardware requirements, see "Hardware Requirements" on page 72.

5.11.1 Program Performance Optimization

5.11.1.1 Scenario

The user wants to optimize the runtime performance of the debugee.

5.11.1.2 Workflow

To get an overview about the program functions in which most CPU time is spend, it
is usually good to start by looking at the Code Profile Window and to sort its func-
tions list according to CPU load:

Code Profile ﬂ
Function IS:::uru:e Coverage IInst Coverage IRun Counk IL::uau:I o Iﬂ

05 _Idle lo0.0% (2721 100.0% (3/3) 9.73% (11122828 1c9)

Sy=Tick_Handler E0_0% (3/8) ?T_6% (BESET) 13 367 0.07% (735453
vwTracestoreEvent 1 21_4% (3714) 51.1% {45r88) 14 307 0.06% (701 041)
05_TICK_Handle Hyh EZ_6% (30757 12 287 0.04% (4Z8 Z20) LI

Filtering Functions

In this example, the program is 99% of its CPU time in the idle loop, which is not rel-
evant for optimizations. To get a clear picture about where the rest of the CPU time is
spend, the idle loop can be filtered from the code profile statistic. This can be done
by selecting function OS_Idle and clicking on the context menu entry "Exclude".

Code Profile |
Function IS:::uru:e Coverage IInst Coverage IRun Count ILu:uau:I i Iil

SysTick_Handler E0_0% [3/8) 7.6% (5ZFE7) 12267 z4.Z22% (735 4E3)
vTraceStoreEvent 1 21.4% (3714) L1.1% i{4L5rs88) 14 207 22.09% (701 041)
25 _TICK_Handle Hik EZ.8% (30787} 12267 14.11% (422 Z20)
ILIMEMEM pr.;..;ess IE.8E (77190 FE.3% (20/62) 13 367 7.92% (240 610) LI

After filtering, the Code Profile Window shows where the application spends the
remaining CPU time. All other functions which affect the CPU load and cannot be opti-
mized any further can be filtered accordingly, to find remaining functions worth opti-
mizing. In this example, a quarter of the remaining CPU time is spend in function
vTraceStoreEventl. Let’s now assume the user wants to optimize the runtime of this
function. By double-clicking on the function it is displayed within the Source Viewer.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

128 CHAPTER 5 Debugging with Ozone

Evaluating Execution Counters

The Source Viewer’s execution counters indi- £33 /¢ Ftore an svent with
cate that an assertion macro within function £%4 woid vTraceStoreBventl |
vTraceStoreEventl has been executed a sig- 11 966 535 [# {
nificant amount of times. The Source Viewer kS TRACE _ALLOC_CRITICH
also indicates that the last 3 instructions of B2
the assertion macro have never been exe- MR 695 |5 PSF_ASSERT {eventID <
: . 11 966 0S001FES SSFE
cuted. This means that the assertion was 11 966 08001FSA FESB3S
alwayS true when it was evaluated. 11 966 OS001FSE 0203
. . 0 Os00lFen zool
Deriving Improvement Concepts 0 08001Fez FOOOR
At this point, the user could think about u cas penOlFes EOSE

removing the assertion or ensuring that the
assertion is only evaluated when the pro-
gram is run in debug mode.

11 966 700 [+ TRACE ENTER CRITICAL |

Impact Estimation

To get an idea of the impact of the optimization, the execution counters may provide
a first idea. In general, optimizing source lines which are executed more often can
result in higher optimization. If the function code is fully sequential, i.e. if there are
no loops or branches in the code, the impact can be estimated exactly.

Code Profile Status Information

The status information of the Code Profile Window displays the target’s actual
instruction execution frequency. An instructions per second value that is significantly
below the targets core frequency may indicate that the target is thwarted by an
excessive hardware IRQ load.

| Code Profile Instruction Counk: 136 094 231 in 541,95 (251 142/=) | Connected @ 2 MHz

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

129

5.12 Static Program Entities

This section explains how users can inspect static program entities within Ozone.
Static program entities are objects that do not change with the execution point.

5.12.1 Functions

Ozone’s Functions Window displays the functions defined within the application pro-
gram (see “Functions Window” on page 85). By double-clicking on a function, the
function is displayed within the Source Viewer (see “Source Viewer” on page 62).

5.12.2 Source Files

Ozone’s Source Files Window displays the source code files that were used to build
the application program (see “Source Files Window” on page 92). By double-clicking
on a source code file, the file is opened within the Source Viewer (see Source Viewer
on page 62). The Source Files Window features a context menu entry that allows
users to locate missing source files (see “Locating Missing Source Files” on
page 131).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

130 CHAPTER 5 Debugging with Ozone

5.13 Program Output

Ozone supports printf-style debugging of the application program. An application
program may send text messages to the debugger by employing one or multiple of
the 10 techniques described below. Text output from the application program is
shown within the Terminal Window (see “Terminal Window” on page 98).

5.13.1 Real Time Transfer

SEGGER’s Real Time Transfer (RTT) is a bi-directional data transmission technique
based on a shared MCU memory buffer. Compared to SWO and semihosting, RTT pro-
vides a a significantly higher data transmission speed. For further information on
Real Time Transfer, please refer to www.segger.com.

5.13.2 SWO

The Terminal Window can capture and display textual data that is sent by the appli-
cation program to the debugger via the MCUs Serial Wire Output (SWO) interface.
SWO is an unidirectional technology; it cannot be used to send data from the debug-
ger to a debugee.

5.13.2.1 SWO Configuration

Text-10 via SWO must be configured both within the application program and within
Ozone. Within the debugger, it is configured via the user action Project.SetSwo (see
“Project Actions” on page 159) or via the Terminal Settings Dialog (see “Terminal
Settings Dialog” on page 59). Furthermore, the SWO interface must be enabled by
checking the Terminal Window’s context menu item "Capture SWO 10". Please refer
to the ARM Information Center for details on how to setup and use printf via SWO in
your application program.

5.13.3 Semihosting

Ozone is able to communicate with the application program via the Semihosting
mechanism. Next to providing bi-directional text 1/0 via the Terminal Window, the
application program can employ Semihosting to perform advanced operations on the
Host-PC such as reading from files. For a complete discussion on Semihosting, please
refer to the ARM Information Center.

5.13.3.1 Semihosting Configuration

Text-10 via the Semihosting mechanism does not need to be configured within
Ozone. However, the application program must apply special assembly code to emit
semihosted text messages. Please refer to the ARM Information Center. for details on
how to setup and use semihosting within your application program. The semihosting
interface can be enabled or disabled via the user action Project.SetSemihosting or via
the Terminal Window’s context menu item "Capture Semihosting 10" (see
“Project.SetSemihosting” on page 184).

5.13.3.2 RTT Configuration

Text-10 via SEGGER’s Real Time Transfer technology does not need to be configured
within Ozone. The debugger will automatically sense whether the application pro-
gram supports RTT. If RTT support is detected, the debugger automatically starts to
capture data on the RTT interface. On the application program side, a special global
program variable must be provided. Please refer to www.segger.com for further infor-
mation on how to setup and use RTT within your application program.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

http://www.segger.com
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
infocenter.arm.com/
www.segger.com
http://www.segger.com
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
infocenter.arm.com/
http://infocenter.arm.com

131

5.14 Other Debugging Activities

This section describes all debugging activities that were not covered by the previous
sections.

5.14.1 Responding to Input Requests

The application program (debugee) can request user input via the Semihosting or
RTT data 10 techniques (see “Program Output” on page 130). This common debug-
ging technique allows users to manipulate the program state at application-defined
execution points and to observe the resulting runtime behaviour. Ozone provides the
Terminal Prompt for answering user input requests (see “Terminal Prompt” on
page 98).

5.14.2 Finding Text Occurrences

Ozone’s Find Dialog allows users to search for text patterns within source code docu-
ments (see “Find Dialog” on page 53). The Find Dialog supports regular expressions
and can be opened via the user action Edit.Find or via the Source Viewer’s context
menu (see “Edit.Find” on page 167).

5.14.3 Inspecting Log Messages

The Console Window displays user- and application-induced log messages (see “Con-
sole Window” on page 75). In particular, the Console Window logs all actions exe-
cuted by the user. Additionally, application errors and messages emitted from script
functions are logged.

5.14.4 Evaluating Expressions

C-style expressions that perform some kind of computation on program symbols and
numbers can be evaluated by adding them to the Watched Data Window (see
“Watched Data Window” on page 96) or programatically via user action EIf.GetEx-
prValue (see “Elf.GetExprValue” on page 204). Please refer to "Expressions"” on
page 152 for more information on Ozone expressions.

5.14.5 Downloading Program Files

The data contents of a program file can be downloaded to MCU memory without
opening the file in the debugger. For this purpose, the user action Exec.Download is
provided (see “Exec.Download” on page 194). The program file that is currently open
in the debugger can be downloaded to MCU memory via the user action Debug.Down-
load (see “Debug.Download” on page 179).

5.14.6 Locating Missing Source Files

This section discusses the handling of source code files that Ozone could not locate
on the file system.

5.14.6.1 Causes for Missing Source Files

When a source code file has been moved from its compile-time location to a different
directory on the file system, the debugger is (in most cases) not able to locate the
file anymore. Due to performance reasons, Ozone only performs a limited file system
search to locate unresolved source code files.

Invalid Root Path

A second reason why one or multiple source files might be missing is that the debug-
ger was not able to determine the program’s root path correctly. The program’s root
path is defined as the common directory prefix that needs to be prepended to relative
file paths specified within the program file.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

132 CHAPTER 5 Debugging with Ozone

5.14.6.2 Missing File Indicators

+ A missing source file is marked with a yellow warning sign within the Source Files
Window. Additionally the Source Viewer will display an informative text instead of file
contents when the program’s execution point is within a missing source code file. The
context menu of missing source files provide an entry that lets users open the Locate
File Dialog (see “Source Files Window” on page 92).

5.14.6.3 Configuration Options

Ozone provides multiple configuration options that allow users to correct the file
paths of missing source code files. Please refer to section "File Path Resolution"” on
page 139 for more details.

5.14.7 Performing Memory IO

Ozone allows users to store MCU memory content to binary data files and vice versa.
Memory-To-File

MCU memory blocks can be saved (dumped) to binary data files via the user action-
Target.SaveMemory (see “Target.SaveMemory” on page 193) or via the Save Mem-
ory Dialog (see “Save Memory Data” on page 52).

File-To-Memory

File contents can be downloaded to MCU memory via the user action Target.Load-
Memory (see “Target.LoadMemory” on page 193) or via the Load Memory Dialog (see
“Load Memory Data” on page 52).

5.14.8 Relocating Symbols

To allow the debugging of self-relocating programs such as bootloaders, Ozone pro-
vides the user action Project.RelocateSymbols (see "Project.RelocateSymbols" on
page 187). This command shifts the absolute addresses of a set of program symbols
by a constant offset. It can thus be used to realign symbol addresses to a modified
program base address.

5.14.9 Initializing the Trace Cache

All instruction-trace related features of Ozone require the prior initialization of the
firmware’s trace cache with the program code to be debugged. When the trace cache
is not initialized, Ozone will display a warning message indicating that trace output
will be inaccurate. In case a download is performed on debug session start, the J-
Link software automatically initializes the trace cache with the downloaded bytes. In
all other situations, i.e. when attaching to a running program or when no program
file is specified, the trace cache has to be initialized manually via command
Debug.ReadIntoTraceCache (see "Debug.ReadlntoTraceCache" on page 179).

5.14.10 Stopping the Debug Session

The debug session can be stopped via the user action Debug.Stop (see “Debug.Stop”
on page 175). The action can be executed from the Debug Menu or by pressing the
hotkey Shift-F5.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

133

Chapter 6

Scripting Interface

This chapter describes Ozone’s scripting interface. The scripting interface allows
users to reprogram key operations within Ozone.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

134

6.1

6.1.1

CHAPTER 6 Scripting Interface

Script Files

Ozone project files (*.jdebug) contain user-implemented script functions that the
debugger executes upon entry of defined events or debug operations. By implement-
ing script functions, users are able to reprogram key operations within Ozone such as
the hardware reset sequence that puts the MCU into its initial state.

Scripting Language

Project files are written in a simplified C language that supports most C language
constructs such as functions and control structures.

6.1.2 Script Functions

6.1.2.1

Project file script functions belong to three different categories: event handler func-
tions, process replacement functions and user functions. Each script function may
contain simplified C code that configures the debugger in some way or replaces a
default operation of the debugging work flow. The different function categories are
described below.

Event Handler Functions

Ozone defines a set of 11 event handler functions that the debugger executes upon
the entry of defined debugging events. Table 6.1 lists the event handler functions
and their associated events. The event handler function "OnProjectLoad" is obliga-
tory, i.e. it must be present in the project file.

Event Handler Function

Description

void OnProjectLoad();

Executed when the project file is opened.

void BeforeTargetReset();

Executed before the MCU is reset.

void AfterTargetReset();

Executed after the MCU was reset.

void BeforeTargetDownload();

Executed before the program file is downloaded.

void AfterTargetDownload();

Executed after the program file was downloaded.

void BeforeTargetConnect();

Executed before a J-Link connection to the MCU is
established.

void AfterTargetConnect();

Executed after a J-Link connection to the MCU was
established.

void BeforeTargetDisconnect();

Executed before the debugger disconnects from the
MCU.

void AfterTargetDisconnect();

Executed after the debugger disconnected from the
MCU.

void AfterTargetHalt();

Executed after the MCU processor was halted.

void BeforeTargetResume();

Executed before the MCU processor is resumed.

Table 6.1. Event handler functions

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

135

Example Event Handler Implementation

Illustrated below is an example implementation of the event handler function "After-
TargetReset". In this example, a peripheral register at memory address 0x40004002
is initialized after the MCU was reset.
/~k**************************~k~k~k~k~k~k~k~k~k~k~k~k******************************

*

AfterTargetReset

Function description
Executed after the MCU was reset.

Xk ok X%

*

R IR S I S S S R I SR I S S I S I kS I I R I I A S R S I R A I 2 I I R A A R S I R Ik A I S I S S I R S I R S I S Sk
*/

void AfterTargetReset (void) {

Target .WriteU32 (0x40004002, OxFF);
}

Figure 6.2. Event handler function "AfterTargerReset"

6.1.2.2 User Functions

Users are free to add custom functions to the project file. These "helper" or user
functions are not called by the debugger directly; instead, user functions need to be
called from other script functions.

6.1.2.3 Process Replacement Functions

Ozone defines 4 script functions that can be implemented within the project file to
replace the default implementations of certain debugging operations. The behavior
that is expected from process replacement functions is described in section 6.2.

Table 6.3 gives an overview:

Process Replacement Function Description

Replaces the default debug session startup
routine.

Replaces the default MCU hardware reset routine
as performed by the J-Link firmware.

Replaces the default MCU connection routine as
performed by the J-Link firmware.

Replaces the default program download routine
as performed by the J-Link firmware.

void DebugStart();

void TargetReset();

void TargetConnect();

void TargetDownload();

Table 6.3. Process replacement functions

6.1.3 API Functions

In the context of Ozone’s scripting functionality, any user action that has a text com-
mand is referred to as an API function (see “Action Tables” on page 155). API func-
tions can be used to trigger debugging operations or to send and receive data to/
from the debugger. In short, APl functions resemble the debugger’s programming
interface (or API).

6.1.4 Executing Script Files

Ozone does not yet support the processing of arbitrary script files. For now, only one
script file is allowed per debug session — which is the project file.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

136 CHAPTER 6 Scripting Interface

6.2 Process Replacement Functions

This section describes how users are expected to implement each of the four process
replacement functions defined within Ozone’s scripting interface.

6.2.1 DebugStart

When the script function "DebugStart"” is present in the project file, the default star-
tup sequence of the debug session is replaced with the operation defined by the
script function.

6.2.1.1 Startup Sequence

Table 6.4 lists the different phases of Ozone’s default debug session startup sequence
(see “Phases of the "Download & Reset Program" startup sequence” on page 116).
The last column of the table indicates the process replacement function that can be
implemented to replace a particular phase of the startup sequence. The complete
startup sequence can be replaced by implementing the script function "DebugStart"”.

Startup Phase Description Script Function

A software connection to the MCU is estab-

Phase 1: Connect lished via J-Link. TargetConnect
Phase 2: Breakpoints Eendlr_lg (data) breakpomts that were set
in offline mode are applied.
Phase 3: Reset A hardware reset of the MCU is performed. | TargetReset
Phase 4- Download The application program is downloaded to TargetDownload
MCU memory.
The initial program operation is per-
Phase 5: Finish formed (see “Initial Program Operation”

on page 117).

Table 6.4. Phases of the default startup sequence and associated process replacement functions

Flow Chart

Appendix 7.6 provides a graphical flow chart of the startup sequence. Most notably,
the flow chart illustrates at what points during the startup sequence certain event
handler functions are called (see “Event Handler Functions” on page 134).

Breakpoint Phase

Phase 2 (Breakpoints) of the default startup sequence is always executed implicitly
after the connection to the MCU was established.

6.2.1.2 Writing a Custom Startup Routine

A custom startup routine that performs all phases of the default sequence but the ini-
tial program operation is displayed below.

/*~k**
*

DebugStart

Function description
Custom debug session startup routine that skips phase 5

X % ok X%

*
R b b b b b I b b b S S I b I S b b b I b b I b b I I I S I I I I I I b b I I b I I I I i I i I b b i I i I b b I I b b I i b
*/
void DebugStart (void) {
Exec.Connect () ;
Exec.Reset () ;

Exec.Download("c:/examples/keil/stm32£f103/blinky.axf");
}

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

137

6.2.2 TargetConnect

When the script function "TargetConnect" is present in the project file, the debug-
ger’s default MCU connection behavior is replaced with the operation defined by the
script function.

6.2.3 TargetDownload

When the script function "TargetDownload" is present in the project file, the debug-
ger’s default program download behavior is replaced with the operation defined by
the script function.

6.2.3.1 Writing a Multi-image Download Routine

An application that requires the implementation of a custom download routine is
when one or multiple additional program images (or data files) need to be down-
loaded to MCU memory along with the application program. A corresponding imple-
mentation of the script function "TargetDownload" is illustrated below.

/***
*

TargetDownload

Xk % %

Function description

Downloads an additional program image to MCU memory
*

R I I b S b b R R I S I S I b R I I S S b R R R R S S b R R R S S I b R I I R R R SR S 2 I h h I I S I kY
*/
void TargetDownload (void) {

Util.Log ("Downloading Program.") ;

/* 1. Download the application program */
Debug.Download() ;

/* 2. Download the additional program image */
Target .LoadMemory ("C:\AdditionalProgramData.hex", 0x20000400) ;
}

Figure 6.6. Custom program download routine

6.2.4 TargetReset

When the script function "TargetReset" is defined within the project file, the debug-
ger’s default MCU hardware reset operation is replaced with the operation defined by
the script function.

6.2.4.1 J-Link Reset Routine

Ozone’s default hardware reset routine is based on the J-Link firmware routine
"JLINKARM_Reset". Please refer to the J-Link user manual for details on this routine
and its MCU-dependant behavior.

6.2.4.2 Writing a Reset Routine for RAM Debug

A typical example where the J-Link hardware reset routine must be replaced with a
custom reset routine is when the application program is downloaded to a memory
address other than zero, for example the RAM base address.

Problem

The J-Link firmware does not know about the application program’s location in MCU
memory and assumes it is located at address O (or at address OxFFFFOOOO when high
vectors are enabled). As the application program’s reset code (or the initial values of

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

138 CHAPTER 6 Scripting Interface

the PC and SP registers for Cortex-M MCUs) are stored within the first few data bytes
of the application program, the J-Link firmware is not able to reset the program cor-
rectly when it is not downloaded to memory address O.

Solution

A custom reset routine for RAM debug typically first executes the default J-Link hard-
ware reset routine. This ensures that tasks such as pulling the MCUs reset pin and
halting the processor are performed. Next, a custom reset routine needs to initialize
the PC and SP registers so that the MCU is ready to execute the first program instruc-
tion.

Example

Figure 6.7 displays the typical implementation of a custom hardware reset routine for
RAM debug of an application program. This implementation is included in project files
generated by the Project Wizard, though it is out commented by default.

/***
*

TargetReset

Xk % %

Function description

Resets a program downloaded to a Cortex-M MCUs RAM section
*

R I I S S b P R R I S S S I b R R I S S b R R R b S b R R R R S S S I b R I R R R R S I b b h h I S S I kY
*/
void TargetReset (void) {

unsigned int SP;

unsigned int PC;

unsigned int ProgramAddr;

Util.Log("Performing custom hardware reset for RAM debug.");
ProgramAddr = 0x20000000;

/* 1. Perform default J-Link firmware reset operation */
Exec.Reset () ;

/* 2. Initialize SP */
SP = Target.ReadU32 (ProgramAddr) ;
Target.SetReg ("SP", SP);

/* 3. Initialize PC */
PC = Target.ReadU32 (ProgramAddr + 4);
Target.SetReg ("PC", PC);

}

Figure 6.7. Hardware reset routine for RAM debug on Cortex-M

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

6.3

139

File Path Resolution

Ozone features an automatic file path resolution mechanism that is employed when-
ever a file path argument is encountered that does not point to a valid file on the file
system. File path resolution is employed for all file types and is not restricted to
source files. The sequence of operations and its configuration options are described
below.

Please ensure that all file path resolution settings are made before the program file is
opened.

6.3.1 File Path Resolution Sequence

Step 1 - Directory Macro Expansion

All directory macros contained within the file path are expanded (see “Directory Mac-
ros” on page 153). If the expanded file path points to a valid file on the file system,
resolution is complete.

Step 2 - Alias Name Substitution

If the user has specified an alias for the file path to resolve, the path is replaced with
the alias (see “Project.AddFileAlias” on page 185). If the alias points to a valid file on
the file system, resolution is complete.

Step 3 - Path-Substitution

Any parts of the unresolved file path that match a user-set path substitute are
replaced with the substitute (see “Project.AddPathSubstitute” on page 186). If the
file path obtained from path substitution points to a valid file on the file system, res-
olution is complete.

Step 4 - Special Directory Lookup

Step 4 of file path resolution is only applied to relative file paths. Unresolved relative
file paths are appended successively to each of the special directories listed in
"Directory Macros" on page 153. Relative source file paths are additionally appended
to the user-specified root directories (see “Project.AddRootPath” on page 186). If any
of the so-obtained file paths points to a valid file on the file system, resolution is
complete.

Step 5 - Search Path Lookup

The file name?l of unresolved file paths is searched within all user-specified search
directories (see “Project.AddSearchPath” on page 186). If any of the search directo-
ries contains a file with the sought name, resolution is complete.

6.3.2 Operating System Specifics

Please note that file path arguments are case-insensitive on Windows and case sensi-
tive on Linux and Mac OSX. When debugging an application on a system that differs
from the build platform, adjustments to the project file’'s path resolution settings
might be required in order for the debugger to be able to locate all files.

1. Thefile name denotes the last part of afile path, i.e. "filename.c" for afile path that reads "/pl/p2/filename.c"

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

140 CHAPTER 6 Scripting Interface

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

141

Chapter 7

Appendix

The Appendix contains table and other large objects that did not fit into their respec-
tive chapters.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

142 CHAPTER 7 Appendix

7.1 Value Descriptors

This section describes how certain objects such as fonts and source code locations
are specified textually to be used as arguments for user actions and script functions.

7.1.1 Frequency Descriptor
Frequency parameters need to be specified in any of the following ways:

e 103000

e 103000 Hz

e 103.5 kHz (or 103.5k)
e 0.13 MHz (or 0.13M)
e 1.1 GHz (or 1.1G)

A frequency parameter without a dimension is interpreted as a Hz value. The permit-
ted dimensions to be used with frequency descriptors are Hz, kHz, MHz and GHz. The
capitalization of the dimension is irrelevant. The dimensions can also be specified
using the letters h, k, M and G. The decimal point can also be specified as a comma.

7.1.2 Source Code Location Descriptor

A source code location descriptor defines a character position within a source code
document. It has the following format:

"File name: line number: [column number]"

Figure 7.1. Source Location Descriptor

Thus, a valid source location descriptor might be "main.c: 100: 1".

File Name

The file name of the source file (e.g. "main.c") or its complete file path (e.g."c:/
examples/blinky/source/main.c").

Line Number
The line number of the source code location.

Column Number

The column number of the source code location. This parameter can be omitted in
situations where it suffices to specify a source code line.

7.1.3 Color Descriptor
Color parameters are specified in any of the following ways:

e steelblue (SVG color keyword)
e #RRGGBB (hexadecimal triple)

Thus, any SVG color keyword name is a valid color descriptor. In addition, a color can
be blended manually by specifying three hexadecimal values for the red, green and
blue color components.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

143

7.1.4 Font Descriptor

Font parameters must be specified in the following format (please note the comma
separation):

"Font Family, Point Size [pt], Font Style"

Figure 7.2. Font Descriptor
Thus, a valid font descriptor might be "Arial, 12pt, bold".

Font Family

Ozone supports a wide variety of font families, including common families such as
Arial, Times New Roman and Courier New. When using font descriptors, the family
name must be capitalized correctly.

Point Size

The point size attribute specifies the point size of the font and must be followed by
the measurement unit. Currently, only the measurement unit "pt" is supported.

Font Style

Permitted values for the style attribute are: normal, bold and italic.

7.1.5 Coprocessor Register Descriptor

A coprocessor register descriptor (CPRD) is a string that identifies a coprocessor reg-
ister of an ARM MCU. A CPRD can be specified in any of the following ways:

e "<CRn>, <CRm>, <Opl>, <Op2=>"
e "<CpNum> , <CRn> , <CRm=> , <Opl>, <Op2>"
e "CpNum=<CpNum=>=>, CRn=<CRn>, CRm=<CRm>, Opl=<Opl>, Op2=<0Op2>"

Values enclosed by "<>" denote numbers. These numbers are the fields of the ARM
MRC or MCR instruction that is used to read the coprocessor register. For details,
please refer to the ARM architecture reference manual applicable to your MCU.

The first format can be used to specify a CP15 register while the second format can
be used to specify any coprocessor register. The third format is just a more concise
version of the second format.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

144 CHAPTER 7 Appendix

7.2 System Constants

Ozone defines a set of global integer constants that can be used as parameters for
script functions and user actions.

7.2.1 Host Interfaces

Table 1 lists permitted values for the host interface parameter (See “Project.SetHos-
tIF” on page 181).

Constant Description
Use this value when the J-Link debug probe is connected to the host-PC
usB .
via USB.
P Use this value when the J-Link debug probe is connected to the host-PC
via Ethernet.

Table 7.3. Host Interfaces

7.2.2 Target Interfaces

Table 2 lists permitted values for the target interface parameter (See “Project.SetTar-
getlF” on page 181).

Constant Description

Use this value when the J-Link debug probe is connected to the MCU via
JTAG

JTAG.

Use this value when the J-Link debug probe is connected to the MCU via
SWD SWD

Table 7.4. Target Interfaces

7.2.3 Boolean Value Constants

Table 4 lists the Boolean value constants defined within Ozone. Please note that the
capitalization is irrelevant.

Constant Description
Yes, True, Active, On, Enabled The option is set.
No, Off, False, Inactive, Disabled The option is not set.

Table 7.5. Boolean Values

7.2.4 Value Display Formats

Table 4 lists permitted values for the display format parameter (See “Window.SetDis-
playFormat” on page 168).

Constant Description

DISPLAY FORMAT_AUTO]Icl)oifralszs values in the most appropriate display
DISPLAY_FORMAT_BINARY Displays integer values in binary notation.
DISPLAY_FORMAT_ DECIMAL Displays integer values in decimal notiation.
DISPLAY_FORMAT_HEXADECIMAL Displays integer values in hexadecimal notation.
DISPLAY_FORMAT_ CHARACTER Displays the text representation of the value.

Table 7.6. Display formats

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

145

7.2.5 Memory Access Widths

Table 5 lists permitted values for the memory access width parameter (See “Tar-
get.SetAccessWidth” on page 192).

Constant Description
AW_AUTO Automatic access.
AW_BYTE Byte access.
AW_HALF_ _WORD Half word access.
AW_WORD Word access.

Table 7.7. Memory Access Widths

7.2.6 Access Types

Table 6 lists permitted values for the access type parameter (See “Break.SetOnData”
on page 199).

Constant Description
AT_READ_ONLY Read-only access.
AT_WRITE_ONLY Write-only access.

AT _READ_ WRITE Read and write access.
AT_NO_ACCESS Access not permitted.

Table 7.8. Access Types

7.2.7 Connection Modes

Table 3 lists permitted values for the connection mode parameter (See “Debug.Set-
ConnectMode” on page 176).

Constant Description

The debugger connects to the MCU and resets it. The
CM_DOWNLOAD_RESET program is downloaded to MCU memory and program
execution is advanced to the main function.

CM ATTACH The debugger connects to the MCU and attaches itself to
- the executing program.

The debugger connects to the MCU, attaches itself to the
executing program and halts program execution.

CM_ATTACH_HALT

Table 7.9. Connection Modes

7.2.8 Reset Modes

Table 6 lists permitted values for the reset mode parameter (See “Debug.SetReset-
Mode” on page 177).

Constant Description

RM_RESET_ HALT Resets the MCU and halts the program at the reset vector.

Resets the MCU and advances program execution to the
RM_BREAK_AT_SYMOL function specified by system variable
VAR_BREAK_AT_THIS_SYMBOL.

RM_RESET_AND_RUN Reset the MCU and starts executing the program.
Table 7.10. Reset Modes

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

146 CHAPTER 7 Appendix

7.2.9 Breakpoint Implementation Types

The Table below lists permitted values for the breakpoint implementation type
parameter (see “Breakpoint Implementation” on page 123).

Constant Description

BP_TYPE_ANY The debugger chooses the implementation type.

The breakpoint is implemented using the MCU’s hardware
breakpoint unit.

The breakpoint is implemented by amending the program
code with particular instructions.

BP_TYPE_HARD

BP_TYPE_SOFT

Table 7.11. Breakpoint Implementation Types

7.2.10 Trace Sources

The Table below lists permitted values for the trace source parameter (see
“Project.SetTraceSource” on page 183).

Constant Display Name | Description

TRACE_SOURCE_NONE| "None" All trace features of Ozone are disabled.

Instruction trace data is read from the MCU'’s
trace pins (in realtime) and provided to
Ozone’s trace windows. This mode requires a
J-Trace debug probe.

TRACE_SOURCE_ETM | "Trace Pins"

Instruction trace data is read from the MCU'’s

TRACE_SOURCE_ETB Trace Buffer embedded trace buffer (ETB).

Printf data is read via the Serial Wire Output

TRACE_SOURCE_SWO | "SWO interface and output to the Terminal Window.

Table 7.12. Breakpoint Implementation Types

Only one trace source can be active at any given time. The J-Link team plans to
remove this constraint in the near future. Please consult the J-Link user manual for
further information about tracing with J-Link or J-Trace debug probes.

7.2.11 Stepping Behaviour Flags

Below is a description of the available binary options (flags) that modify the debug-
ger’s stepping behaviour. The flags can be OR-combined see “Debug.SetStepping-
Mode” on page 178).

Constant Description

Allows stepping operations to
SF_ALLOW_INVISIBLE_BREAKPOINTS enhance stepping performance by
employing invisible breakpoints.
Halts the program when a circular
SF_HALT_AT_CIRCULAR_INSTR_SEQUENCE instruction sequence is detected dur-
ing a stepping operation.

Allows stepping operations to enhance
SF_STEP_OVER_CIRCULAR_INSTR_SEQUENCE| stepping performance by stepping over
circular instruction sequences.

Table 7.13. Stepping Flags

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

7.2.12 Font Identifiers

147

The following constants identify application fonts within Ozone (see “Edit.Font” on

page 166).
Constant Description
FONT_APP Default application font.

FONT_APP_MONO

Default monospace application font.

FONT_ITEM_NAME

Symbol name text font.

FONT_ITEM_VALUE

Symbol value text font.

FONT_TABLE_HEADER

Table header text font.

FONT_SRC_CODE

Source code text font.

FONT_ASM_CODE

assembly code text font.

FONT_CONSOLE

Console Window text font.

FONT_LINE_NUMBERS

Line number text font.

FONT_SRC_ASM_CODE

Source-inlined assembly code font.

FONT_EXEC_COUNTERS

Font used for execution counters.

Table 7.14. Font Identifiers

7.2.13 Color Identifiers
The following constants identify application colors within Ozone (See “Edit.Color” on
page 166).
Constant Description

COLOR_HIGHLIGHT_DARK

Dark selection highlight.

COLOR_HIGHLIGHT_LIGHT

Light selection highlight.

COLOR_CHANGE_LEVEL_1_BG

Change Level 1 background color (See
“Change Level Highlighting” on page 36).

COLOR_CHANGE_LEVEL_2_BG

Change Level 2 background color (See
“Change Level Highlighting” on page 36).

COLOR_CHANGE_LEVEL_3_BG

Change Level 3 background color (See
“Change Level Highlighting” on page 36).

COLOR_CHANGE_LEVEL_1_FG

Change Level 1 foreground color (See
“Change Level Highlighting” on page 36).

COLOR_CHANGE_LEVEL_2_FG

Change Level 2 foreground color (See
“Change Level Highlighting” on page 36).

COLOR_CHANGE_LEVEL_3_FG

Change Level 3 foreground color (See
“Change Level Highlighting” on page 36).

COLOR_PC_ACTIVE

PC Line highlight (active window).

COLOR_PC_INACTIVE

PC Line highlight (inactive window).

COLOR_PC_BACKTRACE

Color used for highlighting the PC line when
the instruction trace window is focused.

COLOR_CALL_SITE_ACTIVE

Function call site highlight (active window).

COLOR_CALL_SITE_INACTIVE

Function call site highlight (inactive window).

COLOR_SIDEBAR_BACKGROUND

Sidebar background color.

COLOR_TABLE_GRID_LINES

Table grid color.

COLOR_SYNTAX_REGNAME

Syntax color of assembly code register oper-
ands.

COLOR_SYNTAX_LABEL

Syntax color of assembly code labels.

COLOR_SYNTAX_MNEMONIC

Syntax color of assembly code mnemonics.

COLOR_SYNTAX_IMMEDIATE

Syntax color of assembly code immediates.

COLOR_SYNTAX_INTEGER

Syntax color of assembly code integer values.

Table 7.15. Color ldentifiers

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

148

CHAPTER 7

Appendix

Constant

Description

COLOR_SYNTAX_KEYWORD

Syntax color of source code keywords.

COLOR_SYNTAX_DIRECTIVE

Syntax color of source code directives.

COLOR_SYNTAX_STRING

Syntax color of source code strings.

COLOR_SYNTAX_COMMENT

Syntax color of source code comments.

COLOR_SYNTAX_TEXT

Source code text color.

COLOR_LINE_NUMBERS

Color of source code line numbers.

COLOR_LINE_NUMBER_SEPARATOR

Color of the line number separator bar.

COLOR_LOGGING_SCRIPT

Console Window script message color
(See “Console Window” on page 75).

COLOR_LOGGING_USER

Console Window command feedback message
color (See “Console Window” on page 75).

COLOR_LOGGING_ERROR

Console Window error message color
(See “Console Window” on page 75).

COLOR_LOGGING_JLINK

Console Window J-Link message color
(See “Console Window” on page 75).

COLOR_PROGRESS_BAR_PROGRESS

Color used for drawing a progress bar’s
progress portion.

COLOR_PROGRESS_BAR_REMAINING

Color used for drawing a progress bar’s
remaining portion.

COLOR_TABLE_ITEM_INACTIVE

Text color of inactive table items.

COLOR_EXEC_PROFILE_GOOD_INST

Code profile highlighting - good instruction.

COLOR_EXEC_PROFILE_GOOD_INST

Code profile highlighting - bad instruction.

COLOR_INLINE_ASM_BACKG

Source Viewer - assembly code fill color.

COLOR_INLINE_ASM_BACKG_ALT

Source Viewer - alternate assembly code fill
color.

COLOR_ASM_LABEL_BACKG

Disassembly Window - symbol label fill color.

Table 7.15. Color Identifiers

7.2.14 User Preference Identifiers

The following constants identify user preferences within Ozone (see “Edit.Preference”

on page 165).

Constant

Description

PREF_SHOW_LINE_NUMBERS

Specifies whether the Source Viewer dis-
plays line numbers.

PREF_LINE_NUMBER_FREQ

Specifies the Source Viewer’s line number
frequency. Possible values are: off (0), cur-
rent line (1), all lines (2), every 5 lines (3)
and every 10 lines (4).

PREF_SHOW_EXPANSION_BAR

Specifies whether the Source Viewer dis-
plays source line expansion indicators.

PREF_SHOW_SIDEBAR_SRC

Specifies whether the Source Viewer dis-
plays its sidebar.

PREF_SHOW_SIDEBAR_ASM

Specifies whether the Disassembly Window
displays its sidebar.

PREF_LOCK_HEADER_BAR

Specifies whether the Source Viewer header
bar’s auto-hide feature is disabled.

PREF_ASM_SHOW_SOURCE

Specifies whether the Disassembly Window
augments assembly code with source code
(see Mixed Mode on page 66).

PREF_ASM_SHOW_LABELS

Specifies whether the Disassembly Window
augments assembly code with symbol labels.

Table 7.16. User Preference ldentifiers

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

149

Constant Description
Specifies weather the Source Viewer aligns
PREF_INDENT __INLINE_ASSEMBLY inline assembly code to source code state-
ments.

Specifies whether the Terminal Window out-

PREF_TERMINAL_NO_CONTROL_CHARS : .
- - = — puts printable ascii characters only.

PREF_TAB_SPACING Source Viewer tabulator spacing.
Indicates if a checkbox should be added to
PREF_DIALOG_SHOW_DNSA popup dialogs that allows users to prevent

the dialog from popping up.

Specifies if the most recent project is auto-

PREF_START_WITH_MOST_RECENT_PROJ - L
- - - - - matically opened on application start.

Specifies if the class name should be

PREF_PREPEND_FUNC_CLASS_NAMES prepended to C++ member functions.

Specifies whether values of (u)char-type

PREF_SHOW_CHAR_TEXT symbols are display as "value (character)".

Specifies whether values of (u)short-type

PREF_SHOW_SHORT_TEXT symbols are display as "value (character)".

Specifies whether values of (u)int-type sym-

PREF_SHOW_INT_TEXT bols are display as "value (character)".

Specifies whether values of (u)char*-type
symbols are display as "value (text)".
Specifies whether values of (u)short*-type
symbols are display as "value (text)".

PREF_SHOW_CHAR_PTR_TEXT

PREF_SHOW_SHORT_PTR_TEXT

Specifies whether values of (u)int*-type
symbols are display as "value (text)".
Specifies whether symbol tooltips are
enabled.

Specifies whether large hexadecimal num-
PREF_SHOW_HEX_ BLOCKS bers are divided into two blocks for better
readability.

PREF_SHOW_INT_PTR_TEXT

PREF_SHOW_SYMBOL_TOOLTIPS

Table 7.16. User Preference ldentifiers

7.2.15 System Variable Identifiers

The following constants identify system variables within Ozone (see “Edit.SysVar” on
page 165).

Constant Description

Program reset mode (see Reset Modes on page 145
for permitted values).

Connection mode (see Connection Modes on
page 145 for permitted values).

Specifies whether the Terminal Window captures
VAR_SEMIHOSTING_ENABLED | Semihosting 10 (see Inspecting a Running Program
on page 126).

Specifies whether the Terminal Window captures

VAR_RESET_MODE

VAR_CONNECT_MODE

VAR_SWO_ENABLED SWO output (see Inspecting a Running Program on
page 126).
Specifies whether the Terminal Window captures
VAR_RTT_ENABLED Real Time Transfer 10 (see Inspecting a Running

Program on page 126).

Table 7.17. System Variable lIdentifiers

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

150

CHAPTER 7 Appendix

Constant

Description

VAR_TIF_SPEED

Target interface speed (see Project Wizard on
page 23 for details and Frequency Descriptor on
page 142 for permitted values).

VAR_TIF_SCAN_CHAIN_POS

Position of the target device on the JTAG scan chain. O
is closest to TDO.

VAR_TIF_SCAN_CHAIN_LEN

Sum of IR-Lens of devices that are positioned closer to
TDO on the JTAG scan chain. IRLen of ARM MCU'’s is 4.

VAR_SWO_CPU_SPEED

SWO calibration parameter: MCU processor
frequency (see Frequency Descriptor on page 142
for permitted values).

VAR_SWO_SPEED

SWO calibration parameter: data transmission fre-
quency (see Frequency Descriptor on page 142 for
permitted values).

VAR_ACCESS_WIDTH

Memory access width (see Memory Access Widths
on page 145 for permitted values).

VAR_BREAKPOINT_TYPE

Specifies the default breakpoint implementation
type to use when setting breakpoints.

VAR_VERIFY_DOWNLOAD

Specifies if a program data should be read-back
from MCU memory and compared to original file
contents to detect download errors.

VAR_BREAK_AT_THIS_SYMBOL

Specifies the function where program execution
should be stopped when reset mode "Reset & Break
at Symbol" is used.

VAR_HSS_SPEED

Specifies the sampling frequency of expressions
added to the Data Graph Window (see Data Graph
Window on page 103). The allowed value range is 1
Hz to 10 kHz. When set to 0, the maximum fre-
quency supported by the hardware is used.

VAR_TRACE_SOURCE

Selects the trace source to use. See Trace Sources
on page 146 for the list of valid values.

VAR_TRACE_PORT_WIDTH

Configures the trace port width in bits. Permitted
values are 1, 2 and 4.

VAR_TRACE_PORT_DELAY_n

Configures the sampling delay of trace pin n
(n=1...4). The valid value range is -5000 to +5000
picoseconds at steps of 50 ns.

VAR_TRACE_PORT_WIDTH

Configures the trace port width in bits. Permitted
values are 1, 2 and 4.

VAR_TRACE_INIT_ON_ATTACH

Specifies wether Ozone should initialize the trace
instruction cache when attaching to a program that
already resides in target memory. The trace
instruction cache is automatically initialized by J-
Link at the moment the program file is down-
loaded.

Table 7.17. System Variable ldentifiers

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

151

7.3 Command Line Arguments

When Ozone is started from the command line, it is possible to specify additional
parameters that configure the debugger in a certain way. The list of available com-
mand line arguments is given below.

Please note that all argument parameters containing white spaces must be quoted.

7.3.1 Project Generation

Command line arguments that generate a startup project. The device, target inter-
face and host interface settings are mandatory.

Parameter Description
--device <device> Selects the target device (for example STM32F4071G).
--if <IF> Assigns the target interface (SWD or JTAG).
--speed <speed> Specifies the target interface speed in kHz.

Assigns the host interface. <hostif> can be set to either
--select <hostif>[=<ID>] USB or IP. The optional parameter <ID> can be set to the

serial number or SP address of the J-Link to connect to.
Sets the host interface to USB and optionally specifies

--usb [<SN>] the serial number of the J-Link to connect to.
. Sets the host interface to IP and specifies the IP address
--ip <IP> .
of the J-Link to connect to.
--programfile Sets the program file to open on startup
Specifies the file path of the generated project. If the
--project project already exists, the new settings are applied to it.

If the project does not exist, it is created.

Table 7.18. Projet Generation Command Line Arguments

7.3.2 Appearance and Logging

Command line arguments that adjust appearance and logging settings.

Parameter Description
Sets Ozone’s GUI theme. Possible values for <style> are
--style <style> "windows", "cleanlooks", "plastique”, "motif" and "macin-
tosh™

When set, Ozone outputs logging information to the
specified text file.

--loginterval <bytes> The byte interval at which the log file is updated.
--debug Opens a debug console window along with Ozone.

--logfile <filepath>

Table 7.19. Appearance and Logging Command Line Arguments

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

152 CHAPTER 7 Appendix

7.4 Expressions

In Ozone, an expression is a term that combines symbol identifiers or numbers via
arithmetic and non-arithmetic operators and that computes to a single value or sym-
bol. Ozone-style expressions are for the most part C-language conformant with cer-
tain limitations as described below.

7.4.1 Areas of Application

Ozone employs expressions in the following areas:

= As monitorable entities within the Watched Data Window
(see “Watched Data Window” on page 96).
< As monitorable entities within the Data Graph Window
(see “Data Graph Window” on page 103).
< As specifiers for the data locations of data breakpoints
(see “Data Breakpoints” on page 122).
< As specifiers for the trigger conditions of conditional breakpoints
(see “Conditional Breakpoints” on page 121).

7.4.2 Operands

The following list gives an overview of valid expression operands:

e Global and Local Variables (e.g.: OS_Global, PixelSizeX)
e Variable Members (e.g.: OS_Global.pTask->1D, OS_Global.Time)
e Numbers (e.g.: OXAEO1, 12.4567, 1000)

7.4.3 Operators
The following list gives an overview of valid expression operators:

e Number arithmetic (+, -, *, /, %)

e Bitwise arithmetic (—, &, |, ™)

e Logical comparison (&&, |])

« Bit-shift (>>, <<)

e Address-of (@)

e size-of (sizeof)

e Number comparison (=, <, >=, <=, ==, =)
e Pointer-operations (*, []1, ->)

e Integer-operations (++, --)

The evaluation order of an expression can be controlled by bracketing
sub-expressions.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

153

7.5 Directory Macros

The following macros can be used as placeholders for certain directory names wher-
ever file path arguments are required:

$(DocDir) The document directory. Expands to "${InstallDir}/doc".
$(PluginDir) The plugin directory. Epxands to "${lInstallDir}/plugins/".
$(ConfigDir) The configuration directory. Expands to "${InstallDir}/config".
$(LibraryDir) The library directory. Expands to "${InstallDir}/lib".
$(ProjectDir) The project file directory.

$(InstallDir) The directory where Ozone was installed to.

$(AppDir) The directory of the program file / debugee.

$(ExecutableDir) The directory of Ozone’s executable file.

$(AppBundleDir) The application bundle directory (Mac OSX).

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

154

CHAPTER 7

7.6 Startup Sequence Flow Chart

Figure 7.20 illustrates the different phases of the "Debug & Download Program™ star-
tup sequence and how it interoperates with script functions (see “Download & Reset
Program” on page 116). Please note that phases 2 (Breakpoints) and 5 (Initial Pro-
gram Operation) of the startup sequence are not displayed in the chart as these

Appendix

phases cannot be reimplemented and do not trigger any event handler functions.

Debugging Work Flow
Replacement Functions
and Standard Execution Called Event Handlers
Alternative Invocation
(Debug.Start)
s DebugStart +~—{ Start debug session J
kst
(]
c
s
S N\
Debug.Connect j
{ BeforeTargetConnect J
fr TargetConnect }--—{ Connect to Target J
AfterTargetConnect
Target.Reset \
: BeforeTargetReset
- \ A
b
& r TargetReset f—(Reset Target J
r AfterTargetReset S
Debug.Download \
C BeforeTargetDownIoadj
3 v
®
kel
C
g TargetDownload Download file to Target
[a)
] j AfterTa rgetDownIoag

o

Figure 7.20. Startup Sequence Flow Chart

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

155

7.7 Action Tables

The following tables provide a quick reference on the user actions provided by Ozone
(see “User Actions” on page 28).

7.7.1 File Actions

Actions that perform file system and related operations.

Action Description

File.NewProject Creates a new project.
File.NewProjectWizard Opens the Project Wizard.

File.Open Opens a file.

File.Load Loads a file.

File.Close Closes a source code document.
File.CloseAll Closes all open source code documents.
File.CloseAllButThis Closes all but the active source code document.
File.Find Searches for a text pattern.
File.SaveProjectAs Saves the project file under a new file path.
File.SaveAll Saves all modified files.

File.Exit Closes the application.

Table 7.21. File Actions

7.7.2 Edit Actions

Actions that edit the behavioral and appearance settings of the debugger.

Action

Description

Edit.JLinkSettings

Opens the J-Link Settings Dialog.

Edit.TraceSettings

Opens the Trace Settings Dialog.

Edit.TerminalSettings

Opens the Terminal Settings Dialog.

Edit.Preferences

Opens the User Preference Dialog.

Edit.SysVars

Displays the System Variable Editor.

Edit.Preference

Edits a user preference.

Edit.SysVar Edits a system variable.
Edit.Color Edits an application color.
Edit.Font Edits an application font.

Edit.DisplayFormat

Edits an object’s value display format.

Edit.RefreshRate

Edits a watched expression’s refresh rate.

Edit.Find

Displays the Find Dialog.

Table 7.22. Edit Actions

7.7.3 ELF Actions

ELF Program file information actions.

Action

Description

Elf.GetBaseAddr

Returns the program file’s download address.

Elf.GetEntryPointPC

Returns the initial value of the program counter.

Elf.GetEntryFuncPC

Returns the first PC of the program’s entry function.

Elf.GetExprValue

Evaluates a symbol expression.

Elf.GetEndianess

Returns the program file’s byte order.

Table 7.23. ELF Actions

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

156 CHAPTER 7 Appendix

7.7.4 Utility Actions

Script function utility actions.

Action Description
Util.Sleep Pauses the current operation for a given amount of time.
Util.Log Prints a message to the console window.

Table 7.24. Utility Actions

7.7.5 View Actions

Actions that navigate to particular objects displayed on the graphical user interface.

Action Description

View.Data Displays the data location of a program variable.
View.Source Displays the source code location of an object.
View.Disassembly Displays the assembly code of an object.
View.CallGraph Displays the call graph of a function.

View.InstrTrace Displays a position in the instruction execution history.
View.Memory Displays a memory location.

View.Line Displays a text line in the active document.

View.PC Displays the PC instruction in the Disassembly Window.
View.PCLine Displays the PC line in the Source Viewer.
View.NextResult Displays the next search result item.

View.PrevResult Displays the previous search result item.

Table 7.25. View Actions

7.7.6 Toolbar Actions

Actions that modify the state of toolbars.

Action Description
Toolbar.Show Displays a toolbar.
Toolbar.Close Hides a toolbar.

Table 7.26. Toolbar Actions

7.7.7 Window Actions

Actions that edit the state of debug information windows.

Action Description

Window.Show Shows a window.

Window.Close Closes a window.
Window.SetDisplayFormat | Sets a window's item display format.
Window.Add Adds a symbol to a window.
Window.Remove Removes a symbol from a window.
Window.Clear Clears a window.

Window.ExpandAll Expands all items of a window.
Window.CollapseAll Collapses all items of a window.

Table 7.27. Window Actions

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

7.7.8 Debug Actions

157

Actions that modify the program execution point and that configure the debugger’s
connection, reset and stepping behaviour.

Action Description
Debug.Start Starts the debug session.
Debug.Stop Stops the debug session.

Debug.Connect

Establishes a J-Link connection to the MCU.

Debug.Disconnect

Disconnects the J-Link connection to the MCU.

Debug.Download

Downloads the program file to the MCU.

Debug.Continue

Resumes program execution.

Debug.Halt

Halts program execution.

Debug.Reset

Reset the program.

Debug.Steplinto

Steps into the current function.

Debug.StepOver

Steps over the current function.

Debug.StepOut

Steps out of the current function.

Debug.SetNextPC

Sets the next machine instruction to be executed.

Debug.SetNextStatement

Sets the next source statement to be executed.

Debug.RunTo

Advances program execution to a particular location.

Debug.SetResetMode

Sets the reset mode.

Debug.SetConnectMode

Sets the connection mode.

Debug.SetSteppingMode

Sets the stepping mode.

Debug.ReadlntoTraceCache

Initializes the trace cache with target memory data.

Table 7.28. Debug Actions

7.7.9 J-Link Actions

Actions that perform basic J-Link operations.

Action

Description

Exec.Connect

Establishes a J-Link connection to the MCU.

Exec.Reset

Executes a J-Link firmware hardware reset of the MCU.

Exec.Download

Downloads a program or a data file to MCU memory.

Exec.Command

Executes a J-Link command.

Table 7.29. J-Link Actions

7.7.10 Help Actions

Actions that display help related information.

Action

Description

Help.About

Shows the About Dialog.

Help.Commands

Prints the command help to the Console Window.

Help.Manual

Displays the user manual.

Table 7.30. Help Actions

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

158 CHAPTER 7 Appendix

7.7.11 Target Actions

Actions that perform MCU memory and register 10.

Action

Description

Target.SetReg

Writes a MCU register.

Target.GetReg

Reads a MCU register.

Target.WriteU32

Writes a word to MCU memory.

Target.WriteU16

Writes a half word to MCU memory.

Target.WriteU8

Writes a byte to MCU memory.

Target.ReadU32

Reads a word from MCU memory.

Target.ReadU16

Reads a half word from MCU memory.

Target.ReadU8

Reads a byte from MCU memory.

Target.FillMemory

Fills a block of MCU memory with a particular value.

Target.SaveMemory

Saves a block of MCU memory to a binary data file.

Target.LoadMemory

Downloads the contents of a data file to MCU memory.

Target.SetAccessWidth

Specifies the memory access width.

Target.SetEndianess

Configures the debugger for a particular data endianess.

Table 7.31. Target Actions

7.7.12 Breakpoint Actions

Actions that modify the debugger’s breakpoint state.

Action

Description

Break.Set

Sets an instruction breakpoint.

Break.SetEx

Sets an instruction breakpoint.

Break.Clear

Clears an instruction breakpoint.

Break.Enable

Enables an instruction breakpoint.

Break.Disable

Disables an instruction breakpoint.

Break.SetOnSrc

Sets a code breakpoint.

Break.SetOnSrcEx

Sets a code breakpoint.

Break.ClearOnSrc

Clears a code breakpoint.

Break.EnableOnSrc

Enables a code breakpoint.

Break.DisableOnSrc

Disables a code breakpoint.

Break.ClearAll

Clears all instruction and code breakpoints.

Break.Edit

Edits a breakpoints advanced properties.

Break.SetType

Sets a breakpoint’s implementation type.

Break.SetOnData

Sets a data breakpoint.

Break.ClearOnData

Clears a data breakpoint.

Break.EnableOnData

Enables a data breakpoint.

Break.DisableOnData

Disables a data breakpoint.

Break.EditOnData

Edits a data breakpoint.

Break.SetOnSymbol

Sets a data breakpoint on a symbol.

Break.ClearOnSymbol

Clears a data breakpoint on a symbol.

Break.EnableOnSymbol

Enables a data breakpoint on a symbol.

Break.DisableOnSymbol

Disables a data breakpoint on a symbol.

Break.EditOnSymbol

Edits a data breakpoint on a symbol.

Break.ClearAllOnData

Clears all data breakpoints.

Table 7.32. Breakpoint Actions

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

7.7.13 Project Actions

159

Actions that configure the debugger for operation in a particular software and hard-

ware environment.

Action

Description

Project.SetDevice

Specifies the MCUs model name.

Project.AddSvdFile

Adds a register set description file.

Project.SetHostIF

Specifies the host interface.

Project.SetTargetlF

Specifies the target interface.

Project.SetTIFSpeed

Specifies the target interface speed.

Project.SetTIFScanChain

Specified the JTAG scan chain parameters.

Project.SetTraceSource

Selects the trace source to use.

Project.SetTracePortWidth

Specifies the number of trace pins comprising the TP.

Project.SetTraceTiming

Configures the trace pin sampling delays.

Project.ConfigSWO

Configures the Serial Wire Output (SWO) interface.

Project.SetSemihosting

Configures the Semihosting 10 interface.

Project.SetRTT

Configures the Real Time Transfer 10 interface.

Project.AddFileAlias

Sets a file path alias.

Project.AddPathSubstitute

Replaces substrings within source file paths.

Project.AddRootPath

Specifies the program'’s root path.

Project.AddSearchPath

Adds a path to the program'’s list of search paths.

Project.SetOSPlugin

Specifies the RTOS-awareness plugin to be used.

Project.SetBPType

Sets the allowed breakpoint implementation type.

Project.SetJLinkScript

Sets the J-Link-Script to be executed on debug start.

Project.SetJLinkLogFile

Sets the text file that receives J-Link logging output.

Project.RelocateSymbols

Relocates one or multiple symbols.

Table 7.33. Project Actions

7.7.14 Code Profile Actions

Code profile related actions.

Action

Description

Profile.Exclude

Filters program entities from the code profile statistic.

Profile.Include

Re-adds program entities to the code profile statistic.

Coverage.Exclude

Filters program entities from the code coverage statistic.

Coverage.Include

Re-adds program entities to the code coverage statistic.

Table 7.34. Code Profile Actions

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

160 CHAPTER 7 Appendix

7.8 User Actions
7.8.1 File Actions

7.8.1.1 File.NewProject

Creates a new project (see “File Menu” on page 31)

Prototype

int File.NewProject();

Return Value

-1: error
0: success

GUI Access

Main Menu ¢ File ® New ¥ New Project (Ctrl+N)

7.8.1.2 File.NewProjectWizard
Opens the Project Wizard (see “Project Wizard” on page 23).

Prototype

int File.NewProjectWizard() ;

Return Value

-1: error
0: success

GUI Access

Main Menu ¢ File ® New ¥ New Project Wizard (Ctrl+Alt+N)

7.8.1.3 File.Open

Opens a file (see “File Menu” on page 31).

Prototype

int File.Open(const char* FileName) ;

Argument Meaning

A project-, source- or program- file path. It is possible to specify the
FileName file path relative to any of the directories listed in section “Directory
Macros” on page 153.

Return Value

-1: error
0: success

GUI Access
Main Menu € File ¥ Open (Ctrl+0O)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

161

7.8.1.4 File.Find

Searches a text pattern in source code documents (see “Find Dialog” on page 53).
Prototype
int File.Find(const char* FindWhat) ;

Return Value

-1: error
0: success

GUI Access

Source Viewer ¥ Context Menu % Find (Ctrl+F)

7.8.1.5 File.Load

Loads a data file. This essentially performs the same operation as File.Open, but does
not reset the MCU prior to downloading the data contents and does not perform the
initial program operation after the data contents where downloaded.

Prototype

int File.Load(const char* FileName, U32 Address) ;

Argument Meaning
Path to a program or data file. It is possible to specify the file path rel-
FileName ative to any of the directories listed in section “Directory Macros” on
page 153.
Address Memory address to download the data contents to. In case the address

is provided by the file itself, an empty string can be specified.

Return Value

-1: error
0: success

GUI Access
None

7.8.1.6 File.Close

Closes a document (see “Source Viewer” on page 62).

Prototype
int File.Close(const char* FileName) ;

Argument Meaning

FileName Fully qualified Path or name of a source file.

Return Value

-1: error
0: success

GUI Access
Document Tab ¥ Context Menu ¢ Close (Ctrl+F4)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

162 CHAPTER 7 Appendix

7.8.1.7 File.CloseAll

Closes all open documents (File Menu on page 31).

Prototype

int File.CloseAll () ;

Return Value

-1: error
0: success

GUI Access
Hotkey (Ctri+Alt+F4)

7.8.1.8 File.CloseAllButThis

Closes all but the active document (see “Source Viewer” on page 62).

Prototype
int File.CloseAllButThis () ;

Return Value

-1: error
0: success

GUI Access
Document Tab ® Context Menu ¥ Close All But This (Ctrl+Shift+F4)

7.8.1.9 File.SaveProjectAs

Saves the project file under a new file path.

Prototype

int File.SaveProjectAs(const char* FileName) ;

Argument Meaning

FileName Fully qualified file path that points to a .jdebug file

Return Value

-1: error
0: success

GUI Access

Main Menu ¢ File ® Save Project as (Ctrl+Shift+S)

7.8.1.10 File.SaveAll

Saves all modified files.

Prototype

int File.SaveAll () ;

Return Value

-1: error
0: success

GUI Access
Main Menu < File € Save all

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

163

7.8.1.11 File.Exit

Closes the application (see “File Menu” on page 31).
Prototype

int File.Exit () ;

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ File ¥ Exit (Alt+F4)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

164 CHAPTER 7 Appendix

7.8.2 Edit Actions

7.8.2.1 Edit.JLinkSettings

Opens the J-Link Settings Dialog (see “J-Link Settings Dialog” on page 51).
Prototype

int Edit.JLinkSettings () ;

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Edit ¢ J-Link Settings (Ctrl+Alt+J)

7.8.2.2 Edit.TraceSettings

Opens the Trace Settings Dialog (see “Terminal Settings Dialog” on page 59).
Prototype

int Edit.TraceSettings|() ;

Return Value

-1: error
0: success

GUI Access
Main Menu € Edit ® Trace-Settings (Ctrl+AIt+T)

7.8.2.3 Edit.TerminalSettings

Opens the Terminal Settings Dialog (see “Terminal Settings Dialog” on page 59).

Prototype
int Edit.TerminalSettings();

Return Value

-1: error
0: success

GUI Access
Terminal Window © Context Menu € Configure (Ctrl+Alt+C)

7.8.2.4 Edit.Preferences

Displays the User Preference Dialog (see “User Preference Dialog” on page 44).
Prototype

int Edit.Preferences|() ;

Return Value

-1: error
0: success

GUI Access

Main Menu ¢ Edit ¢ Preferences (Ctrl+Alt+P)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

165

7.8.2.5 Edit.SysVars
Displays the System Variable Editor (see “System Variable Editor” on page 48).

Prototype
int Edit.SysVars() ;

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Edit ¢ System Variables (Ctrl+Alt+V)

7.8.2.6 Edit.Preference

Edits a user preference.

Prototype

int Edit.Preference(int ID, int Value);

Argument Meaning

User preference identifier (See “User Preference lIdentifiers” on

page 148).

User preference value. Certain user preferences are specified in a pre-
defined format (See “Value Descriptors” on page 142).

ID

Value

Return Value

-1: error
0: success

GUI Access

None.

7.8.2.7 Edit.SysVar

Edits a system variable (see “System Variable Identifiers” on page 149).

Prototype
int Edit.SysVar(int ID, int Value) ;
Argument Meaning
D System variable identifier (See “System Variable Identifiers” on

page 149).

System variable value. Certain system variables are specified in a pre-

Value defined format. Please refer to (See “Value Descriptors” on page 142).

Return Value

-1: error
0: success

GUI Access
None.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

166 CHAPTER 7 Appendix

7.8.2.8 Edit.Color

Edits an application color (see “Color Identifiers” on page 147).

Prototype

int Edit.Color(int ID, int Value);
Argument Meaning
ID Color identifier (See “Color Identifiers” on page 147).
Value Color descriptor (See “Color Descriptor” on page 142).

Return Value

-1: error
0: success

GUI Access
Main Menu € Edit ® Preferences ¥ Appearance

7.8.2.9 Edit.Font

Edits an application font (see “Font Identifiers” on page 147).

Prototype

int Edit.Font (int ID, const char* Font) ;
Argument Meaning
ID Font identifier (See “Font Identifiers” on page 147).
Font Font descriptor (See “Font Descriptor” on page 143).

Return Value

-1: error
0: success

GUI Access

Main Menu ¢ Edit © Preferences ¥ Appearance

7.8.2.10 Edit.DisplayFormat

Edits an object’s value display format.

Prototype

int Edit.DisplayFormat (const char* sObject, int Format) ;
Argument Meaning
sObject Name of a debug information window, program variable or register.
Format Value display format (See “Value Display Formats” on page 144).

Return Value

-1: error
0: success

GUI Access

Window ¥ Context Menu ¥ Display As

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

167

7.8.2.11 Edit.RefreshRate

Sets the refresh rate of a watched expression (see “Live Watches” on page 96).

Prototype

int Edit.RefreshRate (const char* sExpression, int Fregency) ;
Argument Meaning
sExpression C-Language expression (see “Expressions” on page 96).
Frequeny Update frequency in Hz (see “Frequency Descriptor” on page 142).

Return Value

-1: error
0: success

GUI Access

Watched Data Window ¥ Context Menu ¥ Refresh Rate

7.8.2.12 Edit.Find

Searches a text pattern in the active document (see “Source Viewer” on page 62).

Prototype
int Edit.Find(const char* FindWhat) ;

Return Value

-1: error
0: success

GUI Access
Source Viewer & Context Menu ¢ Find (Ctrl+F)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

168 CHAPTER 7 Appendix

7.8.3 Window Actions

7.8.3.1 Window.Show

Shows a window (see “Window Layout” on page 36).

Prototype

int Window.Show(const char* WindowName) ;

Argument Meaning

Name of the window (e.g. “Source Files”). See see “View Menu” on

WindowName page 32.

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ View ¥ Window Name (Shift+Alt+Letter)

7.8.3.2 Window.Close

Closes a window (See “Window Layout” on page 36).

Prototype

int Window.Close(const char* WindowName) ;

Argument Meaning

Name of the window (e.g. “Source Files”). See “View Menu” on

WindowName page 32.

Return Value

-1: error
0: success

GUI Access
Close handle on window title bar (Alt+X)

7.8.3.3 Window.SetDisplayFormat

Set’s a window’s value display format (see “Display Format” on page 36).

Prototype

int Window.SetDisplayFormat (const char* WindowName, int Format) ;
Argument Meaning
WindowName | Name of the window (e.g. “Source Files”). See “View Menu” on page 32.
Format Value display format (See “Value Display Formats” on page 144).

Return Value

-1: error
0: success

GUI Access
Window ¥ Context Menu ¥ Display All As (Alt+Number)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

169

7.8.3.4 Window.Add

Adds a variable to a window (see “Watched Data Window” on page 96).
Prototype
int Window.Add(const char* WindowName, const char* VariableName) ;

Return Value

-1: error
0: success

GUI Access
Window ¢ Context Menu ¢ Add (Alt+Plus)

7.8.3.5 Window.Remove

Removes a variable from a window (see “Watched Data Window” on page 96).
Prototype
int Window.Remove (const char* WindowName, const char* VariableName) ;

Return Value

-1: error
0: success

GUI Access

Window ¢ Context Menu ¥ Remove (Del)

7.8.3.6 Window.Clear

Clears a window.
Prototype

int Edit.TerminalSettings() ;

Return Value

-1: error
0: success

GUI Access

Window ¢ Context Menu ¥ Clear (Alt+Del)

7.8.3.7 Window.ExpandAll

Expands all expandable window items.

Prototype
int Window.ExpandAll () ;

Return Value

-1: error
0: success

GUI Access
Window ® Context Menu € Expand All (Shift+Plus)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

170 CHAPTER 7 Appendix

7.8.3.8 Window.CollapseAll

Collapses all collapsible window items.
Prototype

int Window.CollapseAll () ;

Return Value

-1: error
0: success

GUI Access

Window ¥ Context Menu ¥ Clear (Shift+Minus)

7.8.4 Toolbar Actions

7.8.4.1 Toolbar.Show

Displays a toolbar (see “Showing and Hiding Toolbars” on page 34).
Prototype

int Toolbar.Show(const char* ToolbarName) ;

Return Value

-1: error
0: success

GUI Access

Main Menu < View € Toolbars % Toolbar Name

7.8.4.2 Toolbar.Close

Hides a toolbar (see “Showing and Hiding Toolbars” on page 34).
Prototype

int Toolbar.Show(const char* ToolbarName) ;

Return Value

-1: error
0: success

GUI Access

Main Menu < View € Toolbars % Toolbar Name

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

171

7.8.5 View Actions

7.8.5.1 View.Memory

Displays a memory location within the Memory Window (see “Memory Window” on
page 87).

Prototype

int View.Memory (unsigned int Address) ;

Return Value

-1: error
0: success

GUI Access
Memory Window ¥ Context Menu ¥ Goto Address (Ctrl+G)

7.8.5.2 View.Source

Displays the source code location of a variable, function or machine instruction within
the Source Viewer (see “Source Viewer” on page 62).

Prototype
int View.Source(const char* GenvValStr) ;
Argument | Type Meaning
Variable Name Displays a variable’s source code declaration.
Function Name Displays the first source line of a function.

GenValStr | Memory Address | Displays the source line affiliated with an instruction.

Displays a particular source location (See “Source
Code Location Descriptor” on page 142).

Source Location

Return Value

-1: error
0: success

GUI Access

Symbol Windows ¥ Context Menu ¢ View Source (Ctrl+U)

7.8.5.3 View.Data

Displays the data location of a global or local program variable within the Register
Window (see “Register Window” on page 90) or the Memory Window (see “Memory
Window” on page 87).

Prototype

int View.Data (const char* VariableName) ;

Return Value

-1: error
0: success

GUI Access
Symbol Windows ® Context Menu € View Data (Ctrl+T)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

172

7.8.5.4 View.Disassembly

CHAPTER 7 Appendix

Displays the assembly code of a function or source code statement within the Disas-
sembly Window (see “Disassembly Window” on page 66).

Prototype
int View.Disassembly (const char* GenValStr) ;
Argument | Type Meaning
Function Name Displays the assembly code of a function.
GenVvalStr Source Location Displays the assembly code of a source code line

(See “Source Code Location Descriptor” on page 142).

Memory Address

Displays the assembly code of a machine instruction.

Return Value

-1: error
0: success

GUI Access

Symbol Windows % Context Menu ¢ View Disassembly (Ctrl+D)

7.8.5.5 View.CallGraph

Displays the call graph of a function.

Prototype
int View.CallGraph (const char* sFuncName) ;
Argument Meaning

sFuncName Function name.

Return Value

-1: error
0: success

GUI Access

@ Source Viewer ¥ Context Menu ¢ View Call Graph (Ctrl+H)

7.8.5.6 View.InstrTrace

Displays a position in the history (stack) of executed machine instructions.

Prototype
int View.InstrTrace (int StackPos) ;

Argument Meaning

StackPos Position 1 = most recently executed machine instruction

Return Value

-1: error
0: success

GUI Access

& Context Menu ¥ Goto Position

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

173

7.8.5.7 View.Line

Displays a text line in the active document.
Prototype

int View.Line (unsigned int Line);

Return Value

-1: error
0: success

GUI Access

Source Viewer ¥ Context Menu ¥ Goto Line (Ctrl+L)

7.8.5.8 View.PC

Displays the program’s execution point within the Disassembly Window (see “Disas-
sembly Window” on page 66).

Prototype

int View.PC();

Return Value

-1: error
0: success

GUI Access
Disassembly Window ¥ Context Menu ¥ Goto PC (Ctrl+P)

7.8.5.9 View.PCLine

Displays the program’s execution point within the Source Viewer (see “Source
Viewer” on page 62).

Prototype

int View.PCLine() ;

Return Value

-1: error
0: success

GUI Access

Source Viewer ¥ Context Menu ¥ Goto PC (Ctrl+P)

7.8.5.10 View.NextResult

Displays the next search result.
Prototype

int View.NextResult () ;

Return Value

-1: error
0: success

GUI Access
None.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

174 CHAPTER 7 Appendix

7.8.5.11 View.PrevResult

Displays the previous search result.

Prototype

int View.PrevResult () ;

Return Value

-1: error
0: success

GUI Access
None.

7.8.6 Utility Actions

7.8.6.1 Util.Sleep

Pauses the current operation for a given amount of time.
Prototype

int Util.Sleep(int milliseconds) ;

Return Value

-1: error
0: success

GUI Access

None

7.8.6.2 Util.Log

Prints a message to the Console Window (see “Console Window” on page 75)
Prototype

int Util.Log(const char* Message) ;

Return Value

-1: error
0: success

GUI Access

None

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

175

7.8.7 Debug Actions
7.8.7.1 Debug.Start

Starts the debug session (see “Starting the Debug Session” on page 116). The star-
tup routine can be reprogrammed (see “TargetConnect” on page 137).

Prototype
int Debug.Start();

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Debug ¥ Start Debugging (F5)

7.8.7.2 Debug.Stop

Stops the debug session (see “Stopping the Debug Session” on page 132).
Prototype

int Debug.Stop() ;

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Debug ¥ Stop Debugging (Shift+F5)

7.8.7.3 Debug.Disconnect
Disconnects the debugger from the MCU.
Prototype
int Debug.Disconnect () ;

Return Value

-1: error
0: success

GUI Access

None

7.8.7.4 Debug.Connect

Establishes a J-Link connection to the MCU and starts the debug session in the
default way. A reprogramming of the startup procedure via script function “Target-
Connect” is ignored.

Prototype

int Debug.Connect () ;

Return Value

-1: error
0: success

GUI Access
None

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

176

CHAPTER 7 Appendix

7.8.7.5 Debug.SetConnectMode

Sets the connection mode (see “Connection Mode” on page 116).

Prototype
int Debug.SetConnectMode (int Mode) ;

Argument Meaning

Mode Connection mode (See “Connection Modes” on page 145).

Return Value

-1: error
0: success

GUI Access

Main Menu € Edit ® System Variables (Ctrl+Alt+V)

7.8.7.6 Debug.Continue

Resumes program execution (see “Resume” on page 120).

Prototype

int Debug.Continue () ;

Return Value

-1: error
0: success

GUI Access

Main Menu © Debug ¥ Continue (F5)

7.8.7.7 Debug.Halt

Halts program execution (see “Halt” on page 120).

Prototype

int Debug.Halt () ;

Return Value

-1: error
0: success

GUI Access

Main Menu ¢ Debug < Halt (Ctrl+F5)

7.8.7.8 Debug.Reset

Resets the MCU and the application program (see “Reset” on page 119). The reset
operation can be customized via the scripting interface (see “TargetReset” on

page 137).
Prototype

int Debug.Reset();

Return Value

-1: error
0: success

GUI Access

Main Menu © Debug * Reset (F4)

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

177

7.8.7.9 Debug.SetResetMode

Sets the reset mode. The reset mode determines how the program is reset (see
“Reset Mode” on page 119).

Prototype
int Debug.SetResetMode (int Mode) ;

Argument Meaning

Mode Reset mode (See “Reset Modes” on page 145).

Return Value

-1: error
0: success

GUI Access
Main Menu € Edit ® System Variables (Ctri+Alt+V)

7.8.7.10 Debug.Stepinto

Steps into the current subroutine (see “Step” on page 119).
Prototype

int Debug.StepInto();

Return Value

-1: error
0: success

GUI Access
Main Menu © Debug © Step Into (F11)

7.8.7.11 Debug.StepOver

Steps over the current subroutine (see “Step” on page 119).
Prototype

int Debug.StepOver() ;
Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Debug ¢ Step Over (F12)

7.8.7.12 Debug.StepOut

Steps out of the current subroutine. (see “Step” on page 119).
Prototype
int Debug.StepOut () ;

Return Value

-1: error
0: success

GUI Access
Main Menu © Debug € StepOut (Shift+F11)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

178 CHAPTER 7 Appendix

7.8.7.13 Debug.SetSteppingMode

Sets the program stepping behaviour (see “Stepping Behaviour Flags” on page 146).

Prototype
int Debug.SetSteppingMode (int Mode) ;

Argument Meaning

Combination of stepping options (See “Stepping Behaviour Flags” on

Mode page 146)

Return Value

-1: error
0: success

GUI Access

None

7.8.7.14 Debug.SetNextPC

Sets the execution point to a particular machine instruction (see “Setting the Execu-
tion Point” on page 118).

Prototype
int Debug.SetNextPC (unsigned int Address);

Return Value

-1: error
0: success

GUI Access
Disassembly Window € Context Menu ® Set Next PC (Shift+F10)

7.8.7.15 Debug.SetNextStatement

Sets the execution point to a particular source code line (see “Setting the Execution
Point” on page 118).

Prototype

int Debug.SetNextStatement (const char* Statement) ;

Argument | Type Meaning

Sets the execution point to the first source code line of
a function.

Sets the execution point a particular source code line
(See “Source Code Location Descriptor” on page 142).

Function Name
Statement

Source Location

Return Value

-1: error
0: success

GUI Access

Source Viewer ¥ Context Menu ¥ Set Next Statement (Shift+F10)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

179

7.8.7.16 Debug.RunTo

Advances the program execution point to a particular source code line, function or
instruction address (see “Setting the Execution Point” on page 118).

Prototype

int Debug.RunTo (const char* sLocation) ;

Argument | Type Meaning

Advances program execution to the first source code
line of a function.

Advances program execution to a particular source

Function Name

sLocation Source Location code line (See “Source Code Location Descriptor” on
page 142).
Address Advances program execution to a particular instruction
address.

Return Value

-1: error
0: success

GUI Access
Code Window © Context Menu ¥ Run To Cursor (Ctrl+F10)

7.8.7.17 Debug.Download

Downloads the application program to the MCU (see “Program Files” on page 115).
The download operation can be reprogrammed (see “TargetDownload” on page 137).

Prototype
int Debug.Download() ;

Return Value

-1: error
0: success

GUI Access

None

7.8.7.18 Debug.ReadIntoTraceCache

Initializes the J-Link firmware’s trace cache with target memory data (see “Initializ-
ing the Trace Cache” on page 132).

Prototype

int Debug.ReadIntoTraceCache (U32 Address, U32 Size);
Argument Meaning
Address Start address of target memory block to be read into the trace cache.
Size Byte size of target memory block to be read into the trace cache.

Return Value

-1: error
0: success

GUI Access

None

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

Ozone User Guide (UM08025)

CHAPTER 7

7.8.8 Help Actions

7.8.8.1 Help.About

Shows the About Dialog.

Prototype
int Help.About () ;

Return Value

-1: error
0: success

GUI Access
Main Menu € Help ¥ About

7.8.8.2 Help.Manual

Opens Ozone’s user manual within the default PDF viewer.

Prototype
int Help.Manual () ;

Return Value

-1: error
0: success

GUI Access
Main Menu € Help ® User Manual (F1)

7.8.8.3 Help.Commands

Appendix

Prints the command help to the Console Window (see “Command Help” on page 76)

Prototype

int Help.Commands () ;

Return Value

-1: error
0: success

GUI Access
Console Window ¥ Context Menu ¢ Help (Shift+F1)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

181

7.8.9 Project Actions

7.8.9.1 Project.SetDevice

Specifies the model name of the MCU (see “J-Link Settings Dialog” on page 51).
Prototype

int Project.SetDevice(const char* DeviceName) ;

Return Value

-1: error
0: success

GUI Access
Main Menu € Edit ¢ J-Link Settings (Ctrl+Alt+J)

7.8.9.2 Project.SetHostIF

Specifies the host interface (see “Host Interfaces” on page 144).

Prototype
int Project.SetHostIF (const char* HostIF, const char* HostID);
Argument Meaning
HostIF Host interface (See “Host Interfaces” on page 144).
HostID Host identifier (USB serial number or IP address).

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Edit ¢ J-Link Settings (Ctrl+Alt+J)

7.8.9.3 Project.SetTargetIF

Specifies the target interface (see “Target Interfaces” on page 144).

Prototype
int Project.SetTargetIF (const char* TargetIF);

Argument Meaning

TargetlF Target interface (See “Target Interfaces” on page 144).

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Edit ¢ J-Link Settings (Ctrl+Alt+J)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

182 CHAPTER 7 Appendix

7.8.9.4 Project.SetTIFSpeed

Specifies the target interface speed (see “J-Link Settings Dialog” on page 51).

Prototype
int Project.SetTIFSpeed(const char* Frequency) ;
Argument Meaning
Frequency Frequency descriptor (See “Frequency Descriptor” on page 142).

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Edit ¢ J-Link Settings (Ctrl+Alt+J)

7.8.9.5 Project.SetTIFScanChain

Configures the target interface JTAG scan chain parameters.

Prototype

int Project.SetTIFScanChain(int DRPre, int IRPre);
Argument Meaning
DRPre Position of the MCU in the JTAG scan chain. O is closest to TDO.
IRLen Sums of IR-Lens of MCUs closer to TDO. IRLen of ARM devices is 4.

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Edit ¢ J-Link Settings (Ctrl+Alt+J)

7.8.9.6 Project.SetBPType

Specifies the default breakpoint implementation type.

Prototype
int Project.SetBPType (int Type) ;

Argument Meaning

Breakpoint implementation type (see “Breakpoint Implementation

type Types” on page 146)

Return Value

-1: error
0: success

GUI Access
Code Window ¥ Context Menu ¥ Edit Breakpoint (F8)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

183

7.8.9.7 Project.SetOSPIlugin

Specifies the file path or name of the plugin that adds RTOS-awareness to the debug-
ger.

Prototype

int Project.SetOSPlugin(const char* FilePathOrName) ;

Argument Meaning

File path or name of the plugin that adds RTOS-awareness to
FilePathOrName Ozone. Use argument "embosPlugin” to configure embOS-Aware-
ness and "freeRTOSPIlugin" to configure FreeRTOS-awareness.

Return Value

-1: error
0: success

GUI Access

None

7.8.9.8 Project.SetRTT

Configures the Real Time Transfer (RTT) 10 interface (see “Real Time Transfer” on
page 130).

Prototype

int Project.SetRTT(int OnOff);

Return Value

-1: error
0: success

GUI Access
Main Menu € Edit ® System Variables (Ctri+Alt+V)

7.8.9.9 Project.SetTraceSource

Selects the trace source to be used.

Prototype

int Project.SetTraceSource(const char* sTraceSrc) ;

Argument Meaning

Display name of the trace source to be used (see “Trace Sources” on

sTraceSrc page 146)

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Edit ¢ Trace Settings (Ctrl+AIlt+T)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

184 CHAPTER 7 Appendix

7.8.9.10 Project.SetTracePortWidth

Specifies the number of trace pins (data lines) comprising the connected MCU’s trace
port. This setting is only relevant when the selected trace source is "Trace Pins" /
ETM (see “Project.SetTraceSource” on page 183).

Prototype
int Project.SetTracePortWidth(int PortWidth) ;
Argument Meaning
Portwidth Num_ber of trace data lines provided by the connected MCU.
Possibly values are 1, 2 or 4.

Return Value

-1: error
0: success

GUI Access
Main Menu € Edit ® Trace Settings (Ctri+Alt+T)

7.8.9.11 Project.SetTraceTiming

This command adjusts the trace pin sampling delays. The delays may be neccessary
in case the target hardware does not provide sufficient setup and hold times for the
trace pins. In such cases, delaying TCLK can compensate this and make tracing pos-
sibly anyhow. This setting is only relevant when the selected trace source is "Trace
Pins" / ETM (see “Project.SetTraceSource” on page 183).

Prototype
int Project.SetTraceTiming(int dl, int d2, int d3, int d4);
Argument Meaning
dn Trace data pin n sampling delay in picoseconds. Only the first parame-
ters are relevant when your hardware has less than 4 trace pins.

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Edit ¢ Trace Settings (Ctrl+Alt+T)

7.8.9.12 Project.SetSemihosting

Configures the Semihosting 10 interface (see “Semihosting” on page 130).
Prototype

int Project.SetSemihosting(int OnOff) ;
Return Value

-1: error
0: success

GUI Access
Main Menu € Edit ® System Variables (Ctrl+Alt+V)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

185

7.8.9.13 Project.ConfigSWO

Configures the Serial Wire Output (SWO) 10 interface (see “SWO” on page 130). This
setting is only relevant when the selected trace source is SWO (see “Project.Set-
TraceSource” on page 183).

Prototype
int Project.ConfigSWO (const char* SWOFreq, char* CPUFreq) ;

Argument Meaning

SWOFreq Specifies the data transmission speed on the SWO interface (See “Fre-

quency Descriptor” on page 142).

Specifies the MCUs processor frequency (See “Frequency Descriptor”
on page 142).

CPUFreq

Return Value

-1: error
0: success

GUI Access
Main Menu € Edit ® Trace Settings (Ctrl+AIlt+T)

7.8.9.14 Project.AddSvdFile

Adds a register set description file to be loaded by the Registers Window (see “SVD
Files” on page 90).

Prototype

int Project.AddSvdFile(const char* FileName) ;

Argument Meaning

Path to a CMSIS-SVD file. Both .svd and .xml file extensions are sup-
FileName ported. It is possible to specify the file path relative to any of the direc-
tories listed in section “Directory Macros” on page 153.

Return Value

-1: error
0: success

GUI Access

None

7.8.9.15 Project.AddFileAlias

Adds a file path alias (see “File Path Resolution Sequence” on page 139).

Prototype

int Project.AddFileAlias(const char* FilePath, const char* AliasPath);
Argument Meaning
FilePath Original file path as it appears within the program file or elsewhere.
AliasPath Replacement for the original file path.

Return Value

-1: error
0: success

GUI Access

Source Files Window © Context Menu ¥ Locate File (Space)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

186 CHAPTER 7 Appendix

7.8.9.16 Project.AddRootPath

Adds a root path to the debugger’s file path resolution settings (see “File Path Reso-
lution” on page 139).

Prototype

int Project.SetRootPath(const char* RootPath) ;
Argument Meaning
RootPath Fully qualified path of a file system directory.

Return Value

-1: error
0: success

GUI Access

None

7.8.9.17 Project.AddPathSubstitute

Replaces a substring within unresolved file path arguments (see “File Path Resolu-
tion” on page 139).

Prototype

int Project.AddPathSubstitute(const char* SubStr, const char* Alias);
Argument Meaning
SubStr Substring (directory name) within original file paths.
AliasPath Replacement for the given substring.

Return Value

-1: error
0: success

GUI Access
None

7.8.9.18 Project.AddSearchPath

Adds a directory to the list of search directories. Search directories help the debug-
ger resolve invalid file path arguments (see “File Path Resolution” on page 139).

Prototype
int Project.AddSearchPath(const char* SearchPath) ;

Argument Meaning

SearchPath Fully qualified path of a file system directory.

Return Value

-1: error
0: success

GUI Access

None

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

187

7.8.9.19 Project.SetJLinkScript

Specifies the J-Link script file that is to be executed at the moment the debug session

is started.

Prototype

int Project.SetJLinkScript (const char* FileName) ;

Argument Meaning
Path to a J-Link script file. It is possible to specify the file path relative
FileName to any of the directories listed in section “Directory Macros” on

page 153. Please refer to the J-Link user manual for further infor-
mation on J-Link script files.

Return Value

-1: error
0: success

GUI Access

None

7.8.9.20 Project.SetJLinkLogFile

Specifies the text file that receives J-Link logging output.

Prototype
int Project.SetJLinkLogFile(const char* FileName) ;
Argument Meaning
FileName Path to a text file. It is possible to specify the file path relative to any of
the directories listed in section “Directory Macros” on page 153.

Return Value

-1: error
0: success

GUI Access
None

7.8.9.21 Project.RelocateSymbols

Relocates one or multiple symbols.

Prototype
int Project.RelocateSymbols (const char* sSymbols, int Offset);
Argument Meaning
Specifies the symbols to be relocated. The wildcard character "*"
sSymbols selects all symbols. A symbol name specifies a single symbol. A sec-
tion name such as ".text" specifies a particular ELF data section.
Offset The offset that is added to the base addresses of all specified symbols.

Return Value

-1: error
0: success

GUI Access
None

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

188 CHAPTER 7 Appendix

7.8.10 Code Profile Actions

7.8.10.1 Profile.Exclude

Filters program entities from the code profile (load) statistic. The code profile statis-
tic is re-evaluted as if the filtered items had never belonged to the program.

Prototype

int Profile.Exclude (const char* sFilter);

Argument Meaning

Specifies the items to be filtered. All items that exactly match the
filter string are moved to the filtered set. Wildcard (*) characters
can be placed at the front or end of the filter string to perform par-
tial match filtering.

FilterStr

Return Value

-1: error
0: success

GUI Access
Code Profile Window € Context Menu € Exclude...

7.8.10.2 Profile.Include

Re-adds filtered items to the code profile load statistic.

Prototype

int Profile.Include (const char* sFilter);

Argument Meaning

Specifies the items to be unfiltered. All items that exactly match
the filter string are removed from the filtered set. Wildcard (*)
characters can be placed at the front or end of the filter string to
perform partial match unfiltering.

FilterStr

Return Value

-1: error
0: success

GUI Access

Code Profile Window ¢ Context Menu ¥ Include...

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

189

7.8.10.3 Coverage.Exclude

Filters program entities from the code coverage statistic. The code coverage statistic
is re-evaluted as if the filtered items had never belonged to the program.

Prototype

int Profile.Exclude (const char* sFilter);

Argument Meaning

Specifies the items to be filtered. All items that exactly match the
filter string are moved to the filtered set. Wildcard (*) characters
can be placed at the front or end of the filter string to perform par-
tial match filtering.

FilterStr

Return Value

-1: error
0: success

GUI Access
Code Profile Window € Context Menu ¢ Exclude...

7.8.10.4 Coverage.Include
Re-adds filtered items to the code coverage statistic.

Prototype

int Profile.Include (const char* sFilter);

Argument Meaning

Specifies the items to be unfiltered. All items that exactly match
the filter string are removed from the filtered set. Wildcard (*)
characters can be placed at the front or end of the filter string to
perform partial match unfiltering.

FilterStr

Return Value

-1: error
0: success

GUI Access
Code Profile Window € Context Menu < Include...

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

190 CHAPTER 7 Appendix

7.8.11 Target Actions

7.8.11.1 Target.SetReg

Writes an MCU register (see “MCU Registers” on page 125).
Prototype

int Target.SetReg(const char* RegName, unsigned int Value) ;

Argument Meaning

Name of a core, FPU or coprocessor register (see “Coprocessor Register
Descriptor” on page 143).

Value Register Value to write

RegName

Return Value

-1: error
0: success

GUI Access

None

7.8.11.2 Target.GetReg

Reads an MCU register (see “MCU Registers” on page 125).
Prototype

U32 Target.GetReg(const char* RegName) ;

Argument Meaning

Name of a core, FPU or coprocessor register (see “Coprocessor Register

RegName Descriptor” on page 143).

Return Value

-1: error
register value: success

GUI Access
None

7.8.11.3 Target.WriteU32

Writes a word to MCU memory (see “MCU Memory” on page 125).
Prototype
int Target.WriteU32 (U332 Address, U32 Value) ;

Return Value

-1: error
0: success

GUI Access
None

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

191

7.8.11.4 Target.WriteU16

Writes a half word to MCU memory (see “MCU Memory” on page 125).
Prototype
int Target.WriteUl6 (U32 Address, Ul6 Value) ;

Return Value

-1: error
0: success

GUI Access
None

7.8.11.5 Target.WriteU8

Writes a byte to MCU memory (see “MCU Memory” on page 125).

Prototype
int Target.WriteU8 (U332 Address, U8 Value);

Return Value

-1: error
0: success

GUI Access

None

7.8.11.6 Target.ReadU32

Reads a word from MCU memory (see “MCU Memory” on page 125).

Prototype
U32 Target.ReadU32 (U32 Address) ;

Return Value

-1: error
Memory Value: success
GUI Access

None

7.8.11.7 Target.ReadU16

Reads a half word from MCU memory (see “MCU Memory” on page 125).

Prototype
Ul6 Target.ReadUl6 (U32 Address) ;

Return Value

-1: error
Memory Value: success
GUI Access

None

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

192 CHAPTER 7 Appendix

7.8.11.8 Target.ReadUS8

Reads a byte from MCU memory (see “MCU Memory” on page 125).

Prototype
U32 Target.ReadU8(U32 Address) ;

Return Value

-1: error
Memory Value: success
GUI Access

None

7.8.11.9 Target.SetAccessWidth

Specifies the memory access width (see “Target.SetAccessWidth” on page 192).

Prototype
int Target.SetAccessWidth (U332 AccessWidth) ;

Argument Meaning

AccessWidth Memory access width (See “Memory Access Widths” on page 145)

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Edit ¥ System Variables (Ctrl+Alt+V)

7.8.11.10 Target.FillMemory

Fills a block of MCU memory with a particular value (see “Target.FillMemory” on

page 192).
Prototype
int Target.FillMemory (U32 Address, U32 Size, U8 Fillvalue) ;
Argument Meaning
Address Start address of the memory block to fill.
Size Size of the memory block to fill.
Fillvalue Value to fill the memory block with.

Return Value

-1: error
0: success

GUI Access
Memory Window ¥ Context Menu < Fill (Ctrl+F)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

193

7.8.11.11 Target.SaveMemory

Saves a block of MCU memory to a binary data file (see “Target.SaveMemory” on

page 193).

Prototype

int Target.SaveMemory (const char* FilePath, U32 Address, U32 Size);
Argument Meaning
FilePath Fully qualified path of the destination binary data file (*.bin).
Address Start address of the memory block to save to the destination file.
Size Size of the memory block to save to the destination file.

Return Value

-1: error
0: success

GUI Access

Memory Window ¥ Context Menu ¥ Save (Ctrl+E)

7.8.11.12 Target.LoadMemory

Downloads the contents of a binary data file to MCU memory (see “Target.LoadMem-
ory” on page 193).

Prototype
int Target.LoadMemory (const char* FileName, U32 Address);
Argument Meaning
Path to the binary data file (*.bin). It is possible to specify the file path
FileName relative to any of the directories listed in section “Directory Macros” on
page 153.
Address Download address.

Return Value

-1: error
0: success

GUI Access
Memory Window ¢ Context Menu ¢ Load (Ctrl+L)

7.8.11.13 Target.SetEndianess

Sets the endianess of the selected MCU.

Prototype
int Target.SetEndianess (int BigEndian) ;

Argument Meaning

BigEndian When 0, little endian is selected. Otherwise, big endian is selected.

Return Value

-1: error
0: success

GUI Access
Main Menu ¢ Edit ¢ J-Link-Settings © Target Device (Ctrl+Alt+J)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

194 CHAPTER 7 Appendix

7.8.12 J-Link Actions
7.8.12.1 Exec.Connect

Establishes a J-Link connection to the MCU and triggers the default startup sequence
(see “TargetConnect” on page 137).

Prototype

int Exec.Connect () ;

Return Value

-1: error
0: success

GUI Access
None

7.8.12.2 Exec.Reset

Performs a hardware reset of the MCU (see “Reset” on page 119).

Prototype

int Exec.Reset () ;

Return Value

-1: error
0: success

GUI Access

None

7.8.12.3 Exec.Download

Downloads the contents of a program or data file to MCU memory (see “Downloading
Program Files” on page 131).

Prototype

int Exec.Download(const char* FilePath) ;

Return Value

-1: error
0: success

GUI Access
None

7.8.12.4 Exec.Command

Executes a J-Link command.

Prototype
int Exec.Command(const char* sCommand) ;
Argument Meaning
J-Link command to execute (please refer to the J-Link user manual for
sCommand . .
further information).

Return Value

-1: error
0: success

GUI Access
None

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

195
7.8.13 Breakpoint Actions

7.8.13.1 Break.Set

Sets an instruction breakpoint (see “Instruction Breakpoints” on page 121).

Prototype
int Break.Set (U32 Address);

Return Value

-1: error
0: success

GUI Access
Breakpoint Window ¥ Context Menu ¥ Set / Clear (Alt+Plus)

7.8.13.2 Break.SetEx

Sets an instruction breakpoint of a particular implementation type (see “Instruction
Breakpoints” on page 121).

Prototype
int Break.SetEx(U32 Address, int Type) ;

Argument Meaning

Address Instruction address.

Breakpoint implementation type (see “Breakpoint Implementation
Types” on page 146).

Type

Return Value

-1: error
0: success

GUI Access

None

7.8.13.3 Break.SetOnSrc

Sets a code breakpoint (see “Code Breakpoints” on page 121).

Prototype

int Break.SetOnSrc(const char* GenvValStr) ;

Argument | Type Meaning

Sets the breakpoint on the first source code line of a
function.

Sets the breakpoint on a particular source code line
(See “Source Code Location Descriptor” on page 142).

Function Name
GenValStr

Source Location

Return Value

-1: error
0: success

GUI Access
Breakpoint Window ¥ Context Menu ¥ Set / Clear (Alt+Plus)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

196 CHAPTER 7 Appendix

7.8.13.4 Break.SetOnSrcEx

Sets a code breakpoint of a particular implementation type (see “Code Breakpoints”
on page 121).

Prototype

int Break.SetOnSrc (const char* sLocation, int Type);

Argument | Type Meaning

Sets the breakpoint on the first source code line of a

Function Name .
function.

sLocation - . -
Source Location Sets the breakpoint on a particular source code line
(See “Source Code Location Descriptor” on page 142).
Type Breakpoint implementation type (see “Breakpoint Implementation Types”

on page 146).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window ¥ Context Menu ¢ Set / Clear (Alt+Plus)

7.8.13.5 Break.SetType

Sets a breakpoint’s implementation type (see “Breakpoint Implementation” on
page 123).

Prototype

int Break.SetType(const char* sLocation, int Type) ;

Argument Meaning

Location of the breakpoint as displayed within the first column of the
Breakpoint Window (see “Breakpoint Window” on page 77).

Breakpoint implementation type (see “Breakpoint Implementation
Types” on page 146).

sLocation

Type

Return Value

-1: error
0: success

GUI Access
Breakpoint Window ¥ Context Menu < Edit (F8)

7.8.13.6 Break.Clear

Clears an instruction breakpoint (see “Instruction Breakpoints” on page 121).
Prototype

int Break.Clear (U332 Address);

Return Value

-1: error
0: success

GUI Access
Breakpoint Window ¥ Context Menu ¢ Set / Clear (F9)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

197

7.8.13.7 Break.ClearOnSrc

Clears a code breakpoint (see “Code Breakpoints” on page 121).

Prototype

int Break.ClearOnSrc(const char* GenValStr) ;
Parameter Description

Please refer to “Break.SetOnSrc” on page 195.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window ¥ Context Menu © Set / Clear (F9)

7.8.13.8 Break.Enable

Enables an instruction breakpoint (see “Instruction Breakpoints” on page 121).
Prototype

int Break.Enable (U32 Address) ;

Return Value

-1: error
0: success

GUI Access
Breakpoint Window ¥ Context Menu ¥ Enable (Shift+F9)

7.8.13.9 Break.Disable

Disables an instruction breakpoint (see “Instruction Breakpoints” on page 121).
Prototype

int Break.Disable(U32 Address) ;

Return Value

-1: error
0: success

GUI Access
Breakpoint Window ¥ Context Menu ¢ Disable (Shift+F9)

7.8.13.10 Break.EnableOnSrc

Enables a code breakpoint (see “Code Breakpoints” on page 121).

Prototype

int Break.EnableOnSrc (const char* GenValStr) ;
Parameter Description

Please refer to “Break.SetOnSrc” on page 195.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window ¥ Context Menu ¥ Enable (Shift+F9)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

198

CHAPTER 7 Appendix

7.8.13.11 Break.DisableOnSrc

Disables a code breakpoint (see “Code Breakpoints” on page 121).

Prototype

int Break.DisableOnSrc (const char* GenValStr) ;

Parameter Description
Please refer to “Break.SetOnSrc” on page 195.

Return Value

-1: error
0: success
GUI Access

Breakpoint Window ¥ Context Menu ¢ Disable (Shift+F9)

7.8.13.12 Break.Edit

Edits a breakpoints advanced properties.

Prototype

int Break.Edit (const char* sLocation,
int DoTriggerOnChange,
const char* sTaskFilter,

const char* sCondition,
int SkipCount,
const char* sConsoleMsg,

const char* sMsgBoxMsg) ;

Argument Meaning
. Location of the breakpoint as displayed within the Breakpoint
sLocation .
Window.
C-Expression evaluating to a number or boolean value. The
sCondition expression can include local and global program variable

names as well as their members (f.ex. "pTask-=ID == 3").

DoTriggerOnChange

Indicates weather the condition is met when the expression
value has changed since the last time it was evaluated (DoT-
riggerOnChange=1) or when it does not equal zero (DoTrig-
gerOnChange=0).

Indicates how many times the breakpoint is skipped, i.e. how

SkipCount many times the MCU is resumed when the breakpoint is hit.
The name or ID of the RTOS task that triggers the breakpoint.
sTaskFilter When empty, all RTOS tasks trigger the breakpoint. The task

filter is only operational when an RTOS plugin was specified
using command Project.SetOSPlugin.

sConsoleMsg

Message printed to the Console Window when the breakpoint
is triggered.

sMsgBoxMsg

Message displayed in a message box when the breakpoint is
triggered.

Return Value

-1: error
0: success

GUI Access

Data Breakpoint Window ¢ Context Menu ¢ Edit (F8)

Ozone User Guide (UM08025)

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

199

7.8.13.13 Break.SetOnData

Sets a data breakpoint (see “Data Breakpoints” on page 122).

Prototype

int Break.SetOnData (U332 Address, U32 AddressMask, U8 AccessType,

U8 AccessSize, U32 MatchValue, U32 ValueMask) ;

Argument

Meaning

Address

Memory address that is monitored for 10 (access) events.

AddressMask

Specifies which bits of the address are ignored when monitoring
access events. By means of the address mask, a single data break-
point can be set to monitor accesses to several individual memory
addresses.

AccessType

Type of access that is monitored by the data breakpoint (See “Con-
nection Modes” on page 145).

AccessSize

Access size condition required to trigger the data breakpoint. As an
example, a data breakpoint with an access size of 4 bytes (word)
will only be triggered when a word is written to one of the moni-
tored memory locations. It will not be triggered when, say, a byte is
written.

MatchValue

Value condition required to trigger the data breakpoint. A data
breakpoint will only be triggered when the match value is written to
or read from one of the monitored memory addresses.

ValueMask

Indicates which bits of the match value are ignored when monitor-
ing access events. A value mask of OXxFFFFFFFF means that all bits
are ignored, i.e. the value condition is disabled.

Return Value

-1: error
0: success

GUI Access

Data Breakpoint Window ¥ Context Menu ¥ Set (Alt+Plus)

7.8.13.14 Break.ClearOnData

Clears a data breakpoint (see “Data Breakpoints” on page 122).

Prototype

int Break.ClearOnData (U332 Address, U32 AddressMask, U8 AccessType,

U8 AccessSize, U32 MatchValue, U32 ValueMask) ;

Parameter Description
Please refer to “Break.SetOnData” on page 199.

Return Value

-1: error
0: success

GUI Access

Data Breakpoint Window ¥ Context Menu ¥ Clear (F9)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

200 CHAPTER 7 Appendix

7.8.13.15 Break.ClearAll

Clears all breakpoints (see “Data Breakpoints” on page 122).

Prototype
int Break.Clearall () ;

Return Value

-1: error
0: success

GUI Access
Breakpoint Window ¥ Context Menu < Clear All (Alt+Del)

7.8.13.16 Break.ClearAllOnData

Clears all data breakpoints (see “Data Breakpoints” on page 122).
Prototype

int Break.ClearAllOnDataf() ;

Return Value

-1: error
0: success

GUI Access
Data Breakpoint Window © Context Menu ¥ Clear All (Alt+Del)

7.8.13.17 Break.EnableOnData

Enables a data breakpoint (see “Data Breakpoints” on page 122).

Prototype

int Break.EnableOnData (U32 Address, U32 AddressMask, U8 AccessType,
U8 AccessSize, U32 MatchValue, U32 ValueMask) ;

Parameter Description

Please refer to “Break.SetOnData” on page 199.

Return Value

-1: error
0: success

GUI Access
Data Breakpoint Window © Context Menu ¥ Enable (Shift+F9)

7.8.13.18 Break.DisableOnData

Disables a data breakpoint (see “Data Breakpoints” on page 122).

Prototype

int Break.DisableOnData (U332 Address, U32 AddressMask, U8 AccessType,
U8 AccessSize, U32 MatchValue, U32 ValueMask) ;

Parameter Description

Please refer to “Break.SetOnData” on page 199.

Return Value

-1: error
0: success

GUI Access
Data Breakpoint Window ® Context Menu ¥ Disable (Shift+F9)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

201

7.8.13.19 Break.EditOnData

Edits a data breakpoint (see “Data Breakpoints” on page 122).

Prototype

int Break.EditOnData (U32 Address, U32 AddressMask, U8 AccessType,

U8 AccessSize, U32 MatchValue, U32 ValueMask) ;

Parameter Description
Please refer to “Break.SetOnData” on page 199.

Return Value

-1: error
0: success

GUI Access

Data Breakpoint Window © Context Menu ¥ Edit (F8)

7.8.13.20 Break.SetOnSymbol

Sets a data breakpoint on a symbol (see “Data Breakpoints” on page 122).

Prototype

int Break.SetOnSymbol (const char* SymbolName, U8 AccessType,

U8 AccessSize, U32 MatchValue, U32 ValueMask) ;

Argument Meaning
SymbolName Name of the symbol that is monitored by the data breakpoint.
AccessType Type of access that is monitored by the data breakpoint (See “Con-
nection Modes” on page 145).
Access size condition required to trigger the data breakpoint. As an
example, a data breakpoint with an access size of 4 bytes (word)
AccessSize will only be triggered when a word is written to one of the moni-
tored memory locations. It will not be triggered when, say, a byte is
written.
Value condition required to trigger the data breakpoint. A data
MatchValue breakpoint will only be triggered when the match value is written to
or read from one of the monitored memory addresses.
Indicates which bits of the match value are ignored when monitor-
ValueMask ing access events. A value mask of OXFFFFFFFF means that all bits
are ignored, i.e. the value condition is disabled.

Return Value

-1: error
0: success

GUI Access

Data Breakpoint Window ¢ Context Menu ¥ Set (Alt+Plus)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

202 CHAPTER 7 Appendix

7.8.13.21 Break.ClearOnSymbol

Clears a data breakpoint on a symbol (see “Data Breakpoints” on page 122).

Prototype

int Break.ClearOnSymbol (const char* SymbolName, U8 AccessType,
U8 AccessSize, U32 MatchValue, U32 ValueMask) ;

Parameter Description
Please refer to “Break.SetOnSymbol” on page 201.

Return Value

-1: error
0: success

GUI Access
Data Breakpoint Window ® Context Menu ¥ Clear (F9)

7.8.13.22 Break.EnableOnSymbol

Enables a data breakpoint on a symbol (see “Data Breakpoints” on page 122).

Prototype

int Break.EnableOnSymbol (const char* SymbolName, U8 AccessType,
U8 AccessSize, U32 MatchValue, U32 ValueMask) ;

Parameter Description
Please refer to “Break.SetOnSymbol” on page 201.

Return Value

-1: error
0: success

GUI Access
Data Breakpoint Window © Context Menu ¥ Enable (Shift+F9)

7.8.13.23 Break.DisableOnSymbol

Disables a data breakpoint on a symbol (see “Data Breakpoints” on page 122).

Prototype

int Break.DisableOnSymbol (const char* SymbolName, U8 AccessType,
U8 AccessSize, U32 MatchValue, U32 ValueMask) ;

Parameter Description
Please refer to “Break.SetOnSymbol” on page 201.

Return Value

-1: error
0: success

GUI Access
Data Breakpoint Window ® Context Menu ¥ Disable (Shift+F9)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

203

7.8.13.24 Break.EditOnSymbol

Edits a data breakpoint on a symbol (see “Data Breakpoints” on page 122).

Prototype

int Break.EditOnSymbol (const char* SymbolName, U8 AccessType,
U8 AccessSize, U32 MatchValue, U32 ValueMask) ;

Parameter Description
Please refer to “Break.SetOnSymbol” on page 201.

Return Value

-1: error
0: success

GUI Access
Data Breakpoint Window ¥ Context Menu ¥ Edit (F8)

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

204 CHAPTER 7 Appendix

7.8.14 ELF Actions

7.8.14.1 EIlf.GetBaseAddr

Returns the program file’s download address.

Prototype
int El1f.GetBaseAddr () ;

Return Value

Program file download address.

GUI Access

None

7.8.14.2 EIf.GetEntryPointPC

Returns the initial PC of program execution.

Prototype
int El1f.GetEntryPointPC() ;

Return Value

Initial PC of program execution.

GUI Access

None

7.8.14.3 EIf.GetEntryFuncPC

Return the initial PC of the program’s entry (or main) function.

Prototype
int Elf.GetEntryFuncPC () ;

Return Value

Initial PC of the program entry function.

GUI Access

None

7.8.14.4 EIf.GetExprValue

Evaluates a C-language expression.

Prototype

int Elf.GetExprValue(const char* sExpression) ;

Return Value

Expression value (0 on error)

GUI Access
None

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

205

7.8.14.5 EIlf.GetEndianess

Returns the program file’s data encoding scheme.

Prototype

int Elf.GetEndianess (const char* sExpression);

Return Value
0: Little Endian, 1: Big Endian

GUI Access
None

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

206 CHAPTER 7 Appendix

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

207

IndeXx

A
Access
TYPE e 145
Width . 145
B
Breakpointcccovviiiiiiiiiiii e 121
Dialog .veviiii i 77
Manipulationccccoiiiiiiiiiiiiiin.. 121
WINAOW . 77
C
Change Level ..., 29
Code
Breakpoint ... 121
WINAOWS ..o e 37
Color
DesCriptoroiiiii it 142
ldentifiers ..o 147
Connection
MOAE e e 116
State i 35
Command
Help e 76
Prompt ... 75
D
Data
Locationcooveiiiiiiiiiiii e 124
Breakpointcooiiiiiiiiiiiiiie s 122
Breakpoint Dialogcccociiiiiiiiiinnnn... 49
Breakpoint Windowccccevviinne.L. 77
Debug
CoNtrols .o 119
Information Windowo....l. 36
MENU .. 32
WOrK FIOW ..o 112

Ozone User Guide (UM08025)

E
Edit
MENU oo e 31
Execution Pointcoociiiiiiiiiiiiee 118
=
File
AlAS o 132
MEeNU ..o e 31
MISSING eeiii i 131
Types (supported)ccviiiiiiiiiiiiaan. 16
Find
(D YT=1 Lo o I 53
Font
Descriptorooiiiii s 143
Identifiersccoieiiiiiiiiiiii 147
Function
Call SIteS wiiiiiiii e 124
Calling Hierachy ..., 124
Inline Expansionccooiiiiiaan. 85
WINAOW .. 85
H
Hardware
RESEt o 137
State .o 125
Help
MENU e e 33
|
Instruction
Breakpoint ... 121
ROWS e 66
Trace WIiNdOW covviiiiiiiiiiiiiiiiiieaeeenns 69
Interface
[(01 S 144
Target ...ooooiiiiiiii 144
10
File e 31

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

208

INterfacesovvvviiiiiii e 130
/= 0 0 T] 132
J
J-Link
SettingS «ooiiii 23
Settings Dialogc.ooiiiiii 51
M
Machine Instructioncccviiinan.. 66
Execution Historycccviiiiiiviiinnn... 124
Main Windowccoviiiiiiiiiiii i 30
Memory
Access Width ..., 125
Dialog, Genericcccevviiiiiiiiiiiiieenanns 52
L e 132
WINAOW .. 87
P
Program
Downloadc.coiiiiiiiiiiiiiiiiiie 116
File o s 115
Initial Operation ..., 117
State .o 124
Static Entitiesooiiiiiiiiiii 129
Variable ..o 124
Processor
Operating Modescocoeiiiiiiiiiiniinen.. 91
Project ..o 113
File o s 113
SettingS «ooiii 114
R
Real Time Transfer (RTT)cccovvvinnn... 130
Register
Set Description Filecoociiiiiiin... 90
WINAOW ..o e 90
RESEt e 119
MOAE .o 119
S
Script
File o s 134
FUunctionscoeeiiiiiiiiiiiiiiiiiee 134
Semihosting oooiiii 130
Source
FileS e 62
Files WIiNdOW cooiiiiiiiiiiiiiiiiiieeeeeees 92
Files, Locating Missing 131
A ALY =] 62
Line Numberscoiiiiiiiiiii 63
Sidebar ...oooviiii 38
Status
Bar e 35
MeSSage ..ot 35
SEEPPING weiiie e 119
Flags oo 146
SWO e 130
Symbol
Data .coooiiiii e 124

Ozone User Guide (UM08025)

Index

Local oo 124
Global ... 124
WINAOW .. 124
System
Constantcooviiiiiiiiiiiii e 144
Variablescooeiii i 149
T
Table
WINAOWS oo 36
Terminal
130
Settings Dialog cooviiiii 59
WINAOW o 98
Toolbars ... 34
U
User
ACLION i e 28
Action Tablescccvvviiiiiiiiiiiiiiiiiens 155
Preferenceoooiiiiiiiiiiiiiiiiinn, 148
Preference Dialogcccoviiiiivviiinnn... 44
V
Value
DesCriptors ...ooiiie i 142
TOOIIPS e 62
Viewport
POSItION ..o 87
W
Watch
Dialog woviiie i e 96
Variablescooeoii i 124
Window
Breakpointcccovviiiiiiiiiiiiiiiiee 77
Call Stack ..oovviiiiiiiiiii 81
CoNSOIE .o 75
Data Breakpointscccvciiiviviiiinnnnn.. 83
Disassemblyccooiiiiiiii e 66
Find Resultscccceviiiiiiiiiiiiiiiiiinnn.. 109
FUNCtionS ..o it 85
Global Datacccceeviiiiiiiiiiiiea 95
INStruction Traceccceeeieiiiiierneinnnnnn. 69
Layout ..oooviiiiiiiiiii i 36
Local Datacccooviiiiiii e 93
MEMOKY ot 87
REQISIEIS ..neeiiiiii e 90
Source Files ..o 92
Terminal ..o e 98

© 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

209

Chapter 9

Glossary

This chapter explains the meanings of key terms and abbreviations used throughout
this manual.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

210

CHAPTER 9 Glossary

Big-endian
Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See Little-endian.

Command Prompt
The console window’s command input field.

Debugger

Ozone.

Device
The Microcontroller on which the application program is running.

Halfword
A 16-bit unit of information.

Host
The PC that hosts and executes Ozone.

ID

ldentifier.

Joint Test Action Group (JTAG)
The name of the standards group which created the IEEE 1149.1 specification.

Little-endian

Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

MCU

Microcontroller Unit. A small computer on a single integrated circuit containing a pro-
cessor core, memory, and programmable input/output peripherals.

Memory coherency

A memory is coherent if the value read by a data read or instruction fetch is the
value that was most recently written to that location. Obtaining memory coherency is
difficult when there are multiple possible physical locations that are involved, such as
a system that has main memory, a write buffer, and a cache.

J-Link OB
A J-Link debug probe that is integrated into MCU hardware ("on-board").

PC

Program Counter. The program counter is the address of the machine instruction that
is executed next.

Processor Core

The part of a microprocessor that reads instructions from memory and executes
them, including the instruction fetch unit, arithmetic and logic unit, and the register
bank. It excludes optional coprocessors, caches, and the memory management unit.

Program

Application Program that is beeing debugged and that is running on the Target
Device.

Remapping

Changing the address of physical memory or devices after the application has started

executing. This is typically done to make RAM replace ROM once the initialization has
been done.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

211

RTOS
Real Time Operating System.

Target

Same as Device. Sometimes also refered to as "Target Device".

Target Application
Same as Program.

User Action

A particular operation of Ozone that can be triggered via the user interface or pro-
grammatically from a script function.

Window

One of Ozone’s debug information windows.
Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

212 CHAPTER 9 Glossary

Ozone User Guide (UM08025) © 2013 - 2017 SEGGER Microcontroller GmbH & Co. KG

	Table of Contents
	Introduction
	1.1 What is Ozone?
	1.2 Features of Ozone
	1.2.1 Unlimited Flash Breakpoints
	1.2.2 Wide Range of Supported File Formats
	1.2.3 Fully Customizable User Interface
	1.2.4 Extensive Printf-Support
	1.2.5 Peripheral and CP15 Register Support
	1.2.6 Automatic Reloading of Modified Program Files
	1.2.7 Scripting Interface
	1.2.8 Instruction Trace
	1.2.9 Code Profiling
	1.2.10 Data Graphs
	1.2.11 Timeline
	1.2.12 Advanced Memory Window
	1.2.13 System Variable Editor
	1.2.14 Change-Level Highlighting
	1.2.15 Easy Data Member Navigation

	1.3 Requirements
	1.4 Supported Operating Systems
	1.5 Supported Target Devices
	1.6 Supported Debug Interfaces

	Getting Started
	2.1 Installation
	2.1.1 Installation on Windows
	2.1.2 Uninstallation on Windows
	2.1.3 Installation on Linux
	2.1.4 Uninstallation on Linux
	2.1.5 Installation on macOS
	2.1.6 Uninstallation on macOS

	2.2 Using Ozone for the first time
	2.2.1 Project Wizard
	2.2.2 Starting the Debug Session

	Graphical User Interface
	3.1 User Actions
	3.1.1 Action Tables
	3.1.2 Local and Global User Actions
	3.1.3 Executing User Actions
	3.1.4 Dialog Actions
	3.1.5 Omissible Arguments

	3.2 Change Level Highlighting
	3.3 Main Window
	3.4 Menu Bar
	3.4.1 File Menu
	3.4.2 Edit Menu
	3.4.3 View Menu
	3.4.4 Debug Menu
	3.4.5 Window Menu
	3.4.6 Help Menu

	3.5 Toolbars
	3.5.1 Showing and Hiding Toolbars
	3.5.2 Arranging Toolbars
	3.5.3 Docking and Undocking Toolbars

	3.6 Status Bar
	3.6.1 Status Message
	3.6.2 Window Context Information
	3.6.3 Connection State

	3.7 Debug Information Windows
	3.7.1 Context Menu
	3.7.2 Display Format
	3.7.3 Change Level Highlighting
	3.7.4 Code Windows
	3.7.5 Table Windows
	3.7.6 Window Layout

	3.8 Code Windows
	3.8.1 Program Counter Tracking
	3.8.2 Active Code Window
	3.8.3 Sidebar
	3.8.4 Code Line Highlighting
	3.8.5 Breakpoints
	3.8.6 Code Profile Information

	3.9 Table Windows
	3.9.1 List of Table Windows
	3.9.2 Selectable Table Columns
	3.9.3 Sortable Table Rows
	3.9.4 Editable Table Cells
	3.9.5 Letter Key Navigation
	3.9.6 Tree Structure
	3.9.7 Filter Bar

	3.10 Window Layout
	3.10.1 Opening and Closing Windows
	3.10.2 Undocking Windows
	3.10.3 Docking and Stacking Windows

	3.11 Dialogs
	3.11.1 User Preference Dialog
	3.11.2 System Variable Editor
	3.11.3 Data Breakpoint Dialog
	3.11.4 Breakpoint Properties Dialog
	3.11.5 J-Link Settings Dialog
	3.11.6 Generic Memory Dialog
	3.11.7 Find Dialog
	3.11.8 Disassembly Export Dialog
	3.11.9 Code Profile Report Dialog
	3.11.10 Trace Settings Dialog
	3.11.11 Terminal Settings Dialog

	Debug Information Windows
	4.1 Source Viewer
	4.1.1 Code Window
	4.1.2 Supported File Types
	4.1.3 Font
	4.1.4 Symbol Tooltips
	4.1.5 Expression Tooltips
	4.1.6 Document Tab Bar
	4.1.7 Document Header Bar
	4.1.8 Opening and Closing Documents
	4.1.9 Source Line Numbers
	4.1.10 Expandable Source Lines
	4.1.11 Context Menu
	4.1.12 Syntax Highlighting
	4.1.13 Advanced Hotkeys

	4.2 Disassembly Window
	4.2.1 Code Window
	4.2.2 Offline Functionality
	4.2.3 Instruction Rows
	4.2.4 Mixed Mode
	4.2.5 Text Highlighting
	4.2.6 Viewport
	4.2.7 Context Menu

	4.3 Instruction Trace Window
	4.3.1 Hardware Requirements
	4.3.2 Limitations
	4.3.3 Setup
	4.3.4 Instruction Stack
	4.3.5 Call Frame Blocks
	4.3.6 Backtrace Highlighting
	4.3.7 Context Menu
	4.3.8 Hotkeys
	4.3.9 Automatic Data Reload

	4.4 Code Profile Window
	4.4.1 Table Window
	4.4.2 Hardware Requirements
	4.4.3 Code Statistics
	4.4.4 Execution Counters
	4.4.5 Filters
	4.4.6 Context Menu

	4.5 Console Window
	4.5.1 Command Prompt
	4.5.2 Message Types
	4.5.3 Message Colors
	4.5.4 Context Menu
	4.5.5 Command Help

	4.6 Breakpoint Window
	4.6.1 Table Window
	4.6.2 Breakpoint Attributes
	4.6.3 Breakpoint Dialog
	4.6.4 Expandable Source Breakpoints
	4.6.5 Context Menu
	4.6.6 Editing Breakpoints Programmatically
	4.6.7 Offline Breakpoint Modification

	4.7 Call Graph Window
	4.7.1 Table Window
	4.7.2 Overview
	4.7.3 Table Columns
	4.7.4 Uncertain Values
	4.7.5 Recursive Call Paths
	4.7.6 Function Pointer Calls
	4.7.7 Accelerated Initialization
	4.7.8 Context Menu

	4.8 Call Stack Window
	4.8.1 Table Window
	4.8.2 Function Call Frames
	4.8.3 Active Call Frame
	4.8.4 Context Menu

	4.9 Data Breakpoint Window
	4.9.1 Table Window
	4.9.2 Data Breakpoint Attributes
	4.9.3 Data Breakpoint Dialog
	4.9.4 Context Menu
	4.9.5 Offline Data Breakpoint Manipulation
	4.9.6 Editing Data Breakpoints Programmatically

	4.10 Functions Window
	4.10.1 Table Window
	4.10.2 Function Attributes
	4.10.3 Inline Expanded Functions
	4.10.4 Breakpoint Indicators
	4.10.5 Context Menu

	4.11 Memory Window
	4.11.1 Change Level Highlighting
	4.11.2 Data Sections
	4.11.3 Viewport
	4.11.4 Toolbar
	4.11.5 Generic Memory Dialog
	4.11.6 Periodic Update
	4.11.7 Symbol Drag & Drop
	4.11.8 Context Menu
	4.11.9 Pasting Of Clipboard Content
	4.11.10 Multiple Instances

	4.12 Register Window
	4.12.1 Table Window
	4.12.2 SVD Files
	4.12.3 Register Groups
	4.12.4 Bit Fields
	4.12.5 Processor Operating Mode
	4.12.6 Context Menu

	4.13 Source Files Window
	4.13.1 Table Window
	4.13.2 Source File Information
	4.13.3 Unresolved Source Files
	4.13.4 Context Menu

	4.14 Local Data Window
	4.14.1 Table Window
	4.14.2 Call Site Symbols
	4.14.3 Auto Mode
	4.14.4 Data Breakpoint Indicator
	4.14.5 Context Menu

	4.15 Global Data Window
	4.15.1 Table Window
	4.15.2 Data Breakpoint Indicator
	4.15.3 Context Menu

	4.16 Watched Data Window
	4.16.1 Table Window
	4.16.2 Expressions
	4.16.3 Live Watches
	4.16.4 Variable Scope
	4.16.5 Watch Dialog
	4.16.6 Context Menu

	4.17 Terminal Window
	4.17.1 Supported IO Techniques
	4.17.2 Terminal Prompt
	4.17.3 Context Menu
	4.17.4 Asynchronous User Input

	4.18 Timeline Window
	4.18.1 Requirements
	4.18.2 Overview
	4.18.3 Exception Frames
	4.18.4 Frame Tooltips
	4.18.5 Zoom Cursor
	4.18.6 Backtrace Highlighting
	4.18.7 Automatic Reload
	4.18.8 Panning
	4.18.9 Zooming
	4.18.10 Task Context Highlighting
	4.18.11 Context Menu
	4.18.12 Toolbar

	4.19 Data Graph Window
	4.19.1 Overview
	4.19.2 Requirements
	4.19.3 Window Layout
	4.19.4 Setup View
	4.19.5 Graphs View
	4.19.6 Samples View
	4.19.7 Toolbar

	4.20 Find Results Window
	4.20.1 Search Results
	4.20.2 Find Dialog
	4.20.3 Context Menu

	Debugging with Ozone
	5.1 Debugging Work Flow
	5.2 Projects
	5.2.1 Project File Example
	5.2.2 Opening Project Files
	5.2.3 Creating Project Files
	5.2.4 Project Settings
	5.2.5 User Perspective Files

	5.3 Program Files
	5.3.1 Supported File Types
	5.3.2 Symbol Information
	5.3.3 Opening Program Files
	5.3.4 Automatic Download
	5.3.5 Data Encoding

	5.4 Starting the Debug Session
	5.4.1 Connection Mode
	5.4.2 Initial Program Operation
	5.4.3 Reprogramming the Startup Sequence
	5.4.4 Visible Effects

	5.5 Execution Point
	5.5.1 Observing the Execution Point
	5.5.2 Setting the Execution Point

	5.6 Debugging Controls
	5.6.1 Reset
	5.6.2 Step
	5.6.3 Resume
	5.6.4 Halt

	5.7 Breakpoints
	5.7.1 Code Breakpoints
	5.7.2 Instruction Breakpoints
	5.7.3 Function Breakpoints
	5.7.4 Conditional Breakpoints
	5.7.5 Data Breakpoints
	5.7.6 Breakpoint Implementation
	5.7.7 Offline Breakpoint Modification
	5.7.8 Unlimited Flash Breakpoints

	5.8 Program State
	5.8.1 Data Symbols
	5.8.2 Function Calling Hierarchy
	5.8.3 Instruction Execution History
	5.8.4 Symbol Tooltips

	5.9 Hardware State
	5.9.1 MCU Registers
	5.9.2 MCU Memory

	5.10 Inspecting a Running Program
	5.10.1 Live Watches
	5.10.2 Symbol Trace
	5.10.3 Streaming Trace

	5.11 Advanced Program Analysis And Optimization Hints
	5.11.1 Program Performance Optimization

	5.12 Static Program Entities
	5.12.1 Functions
	5.12.2 Source Files

	5.13 Program Output
	5.13.1 Real Time Transfer
	5.13.2 SWO
	5.13.3 Semihosting

	5.14 Other Debugging Activities
	5.14.1 Responding to Input Requests
	5.14.2 Finding Text Occurrences
	5.14.3 Inspecting Log Messages
	5.14.4 Evaluating Expressions
	5.14.5 Downloading Program Files
	5.14.6 Locating Missing Source Files
	5.14.7 Performing Memory IO
	5.14.8 Relocating Symbols
	5.14.9 Initializing the Trace Cache
	5.14.10 Stopping the Debug Session

	Scripting Interface
	6.1 Script Files
	6.1.1 Scripting Language
	6.1.2 Script Functions
	6.1.3 API Functions
	6.1.4 Executing Script Files

	6.2 Process Replacement Functions
	6.2.1 DebugStart
	6.2.2 TargetConnect
	6.2.3 TargetDownload
	6.2.4 TargetReset

	6.3 File Path Resolution
	6.3.1 File Path Resolution Sequence
	6.3.2 Operating System Specifics

	Appendix
	7.1 Value Descriptors
	7.1.1 Frequency Descriptor
	7.1.2 Source Code Location Descriptor
	7.1.3 Color Descriptor
	7.1.4 Font Descriptor
	7.1.5 Coprocessor Register Descriptor

	7.2 System Constants
	7.2.1 Host Interfaces
	7.2.2 Target Interfaces
	7.2.3 Boolean Value Constants
	7.2.4 Value Display Formats
	7.2.5 Memory Access Widths
	7.2.6 Access Types
	7.2.7 Connection Modes
	7.2.8 Reset Modes
	7.2.9 Breakpoint Implementation Types
	7.2.10 Trace Sources
	7.2.11 Stepping Behaviour Flags
	7.2.12 Font Identifiers
	7.2.13 Color Identifiers
	7.2.14 User Preference Identifiers
	7.2.15 System Variable Identifiers

	7.3 Command Line Arguments
	7.3.1 Project Generation
	7.3.2 Appearance and Logging

	7.4 Expressions
	7.4.1 Areas of Application
	7.4.2 Operands
	7.4.3 Operators

	7.5 Directory Macros
	7.6 Startup Sequence Flow Chart
	7.7 Action Tables
	7.7.1 File Actions
	7.7.2 Edit Actions
	7.7.3 ELF Actions
	7.7.4 Utility Actions
	7.7.5 View Actions
	7.7.6 Toolbar Actions
	7.7.7 Window Actions
	7.7.8 Debug Actions
	7.7.9 J-Link Actions
	7.7.10 Help Actions
	7.7.11 Target Actions
	7.7.12 Breakpoint Actions
	7.7.13 Project Actions
	7.7.14 Code Profile Actions

	7.8 User Actions
	7.8.1 File Actions
	7.8.2 Edit Actions
	7.8.3 Window Actions
	7.8.4 Toolbar Actions
	7.8.5 View Actions
	7.8.6 Utility Actions
	7.8.7 Debug Actions
	7.8.8 Help Actions
	7.8.9 Project Actions
	7.8.10 Code Profile Actions
	7.8.11 Target Actions
	7.8.12 J-Link Actions
	7.8.13 Breakpoint Actions
	7.8.14 ELF Actions

	Index
	Glossary

