Ozone

User Guide & Reference Manual

Document: UM08025
Software Version: 2.62
Revision: 1
Date: Mai 21, 2019

|
/ SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

https://www.segger.com/ozone
http://www.segger.com
http://www.segger.com

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed to
be entirely free of error. The information in this manual is subject to change for functional or
performance improvements without notice. Please make sure your manual is the latest edition.
While the information herein is assumed to be accurate, SEGGER Microcontroller GmbH (SEG-
GER) assumes no responsibility for any errors or omissions. SEGGER makes and you receive no
warranties or conditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2013-2019 SEGGER Microcontroller GmbH, Hilden / Germany

Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173 993120
Fax. +49 2173 99312 28
E-mail: support @egger.com

Internet: WWW. segger. com

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please report it to us and we will try to assist you as soon as possible.

Contact us for further information on topics or functions that are not yet documented.
Print date: Mai 21, 2019

Manual

. Revision| Date By Description
version

2.62 1 190409 JD | Section Appendix updated.

Section RTOS Window added.

Section RTOS Awareness Plugin added.

Section JavaScript Classes added.

Section Quick Find Widget added.

Section Features of Ozone updated.

Section Timeline Window updated.

Section Project Files updated.

Section Working With Expressions updated.
Section File Path Resolution Sequence updated.
Section Find Dialog renamed Find In Files Dialog
Chapter Appendix updated.

Contact information updated.

2.62 0 190405 D

Moved Section Expressions to Chapter Debugging With Ozone.
2.60 2 181023 JD | Moved Section File Path Resolution to Chapter Debugging With Ozone.
Chapter Appendix updated.

2.60 1 181019 JD | Chapter Appendix updated.

Section Instruction Trace Export Dialog added.
Chapter Appendix updated.

2.57 4 180830 JD | Chapter Appendix updated.

2.60 0 181008 JD

Section Setting Up Trace added.

Section Power Graph Window added.

Section J-Link Control Panel added.

Section Data Breakpoints added.

Chapter Debugging With Ozone restructured.
Section Timeline Window updated.

Section Instruction Trace Window updated.
Section Call Stack Window updated.

Section Data Graph Window updated.
Section Trace Settings Dialog updated.
Section File Path Resolution Sequence updated.
Section Features of Ozone updated.

Section View Menu updated.

Chapter Appendix updated.

2.57 3 180830 JD

Section Trace Settings Dialog updated.

2.57 2 180711 | JD | chapter Appendix updated.

Section Trace Cache renamed to Setting Up The Instruction Cache.
2.57 1 180227 JD | Section Trace.ExportCSV added.
Section Errors and Warnings added.

Section Selective Tracing added.

Section Environment Variables added.

2.57 0 180227 JD | Section Working With Expressions updated.
Chapter Appendix updated.

The user manual was ported to emDoc.

Section Downloading Program Files added.

Section Register Initialization added.

Section Incorporating a Bootloader into Ozone’s Startup Sequence added.
Chapter Appendix updated.

2.56 1 180227 JD

Removed suffix "Co KG” from the company name.
2.56 0 180214 JD | Section Memory Window updated.
Section Tools Menu updated.

Added a new user action category Tools Actions.

2.35 1 180129 D Updated the description of user action Script.Exec.

Section Supported Target Devices updated.
2.55 0 180122 JD | Section Target Support Plugins added.
Documented breakpoint callback functions.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

Manual _ -
. Revision D B
version | REVISiO ate y Description

Section Action Tables updated.

2.54 0 171205 JD | Section Memory Usage Window updated.

2.53 1 171121 JD | Section Memory Usage Window added.
Section File.OpenRecent added.
Section Type Casts added.

2.53 0 171113 1D Section Supported Target Devices updated.
Section Coprocessor Register Descriptor updated.

2.52 1 171029 JD | Improved the layour and readability of multiple sections.
Chapter Appendix updated.
Section Newline Formats added.

2.52 0 171022 JD | Section Code Profile Export Formats added.
Section Memory Window updated.
Section Terminal Window updated.

2.50 1 170918 JD | Section Supported Programming Languages added.

2.50 0 170911 JD | Updated the version number to 2.50.
Sections 4.1.12, 7.8.9.9 added.

2.47 0 170905 JD | Sections 1.2, 3.9.7, 3.11.10, 4.7.13, 5.13.1.1, 7.3.1, 7.7.13 updated.
Sections 3.11.11, 7.7.2, 7.8.2.3 removed.

2.46 0 170817 JD | Updated the version number to 2.46

2.45 1 170810 JD | Section Command Line Arguments updated.
Section Trace Cache added.

2.45 0 170808 1D Section Filter Bar added.
Section Command Line Arguments added.

2.44 0 170712 JD | Section User Files added.
Chapter Appendix updated.

2.42 0 170621 JD | Updated multiple figures and sections.

2.40 0 170515 JD | Updated multiple figures and sections.
Corrected spelling errors.

2.32 0 170410 JD | Section Call Frame Blocks updated.
Chapter Appendix updated.
Section Timeline Window added.

2.31 0 170404 D Section Project.RelocateSymbols added.

2.30 0 170313 JD | Updated the version number to 2.30.

2.29 1 170306 | JD | Added system variable VAR TRACE_PORT_W DTH.

2.29 0 170129 JD | Section Call Graph Window added.

2.22 3 170118 JD | Section Project.AddRootPath updated.

2.22 2 161123 JD | Section Advanced Program Analysis And Optimization Hints added.
Section Data Graph Settings Dialog added.

2.22 1 161111 D Section User Actions updated.

2.22 0 161031 JD | Updated the version number to 2.22.

2.20 1 160928 JD | Section Project.SetJLinkLogFile added.

2.20 0 160915 JD | Updated the version number to 2.20.

2.18 0 160802 JD | Section Data Graph Window updated.

2.17 6 160718 JD | Renamed “User Guide” to “User Manual”.

2.17 5 160623 JD | Correct spelling errors.
Integrated documentation about editable data breakpoints.

2.17 4 160622 JD | Updated all content menu graphics and hotkey descriptions.
Removed obsolete user actions.

2.17 3 160616 JD | Removed obsolete user actions.

2.17 2 160613 JD | Fixed spelling and grammatical errors.

2.17 1 160606 JD | Section Coprocessor Register Descriptor added.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

Manual _ -
; Revision| Date By Description
version
Section Data Graph Window added.
2.17 0 160520 D Section Working With Expressions updated.
Section Live Watches added.
2.15 1 160427 D Section Working With Expressions added.
2.15 0 160324 JD | Changed the product name to “Ozone - the J-Link Debugger”.
2.12 2 160225 JD | Moved sections.
Section File Path Resolution Sequence added.
2.12 1 160215 D Section Hardware Requirements updated.
Section Code Profile Window added.
Section Instruction Trace Window updated.
2.12 0 160122 D Section Watched Data Window updated.
Section Source Viewer updated.
2.10 2 160115 JD | Fixed a typo in section Target Actions.
2.10 1 151208 JD | Section Directory Macros added.
2.10 0 151203 JD | Update the version number to 2.10.
Section Conditional Breakpoints added.
1.79 0 151118 D Section Big Endian Support added.
1.72 0 150505 JD | Original version.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0-13-1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

Table of contents

N 11 0 o 11 o 1o o SRR 18
3 R U o = Y A @ 7o =P 19
1.2 FEatures Of OZO0NE ..oiiiiiiiiiiii it a e e e s e s e r e rn e e e enes 20

1.2.1 Fully Customizable User Interfaceccoiviiiiiiiiiiiiiiiici i 20
1.2.2 Scripting Interface cooiiiiiii i e 20
1.2.3 RTOS AWAIENESS ..iiiutiiitiiiterattiate it atesant st tanesrastaanesrantaaneraaneesnness 20
1.2.4 Code Profiling oo 20
1.2.5 PoWer Profiling oo e 20
1.2.6 Data Graphs .ottt 20
N I [0 1= 11 PP 20
7208 S B I o 13 o L o o R =T < 21
1.2.9 Unlimited Flash Breakpointsciiiiiiiiiiiiiiii i v 21
1.2.10 Wide Range of Supported File FOormatscoiviviiiiiiiiiiiii e 21
1.2.11 Peripheral and CP15 Register SUpPPOrtccviiiiiii i i 21
1.2.12 EXtensive Printf-SuUpPPOrtoiiiiiiii i e 21
1.2.13 Advanced Memory WIiNAOWccviiiiiiiiiiii i it e e eiae e as 21
1.2.14 Disassembly EXPOrt ...uiiiiiiiiii i i i e e 21
1.2.15 Instruction Set SIimulationccooiiiiiiii e 21
B T =T U 1T =T o 1= P 22
1.4 Supported Operating Systems ...t e 23
1.5 Supported Targel DeVICES ..ciiiiiiiii i i i e e e 24
T Y o PP 24
T 0 S Y P 24
1.5.3 Target Support PIUGINSuiiiiiiiiii i 24
1.6 Supported Debug INterfaCes ...c.oiiiiiiiiiiiii i i 25
1.7 Supported Programming LangUagesc.ciiiiiiiiiiiiiiiiie it i s sniee e aaieeanns 26

2 GEMliNG STAMEAeeiiiiiiiiiiiiii ettt e e e e e e e e e e e e e e e 27

720 R o 1= 1= 1 = o o T 28
2.1.1 Installation on WIindOWSoiiiiiiiiiii i i e e e v eaaeaas 28
2.1.2 Uninstallation on WINAOWS ...oiiiiiiiiiiiii i it i e e as 28
2.1.3 Installation on LiNUX ...coiiiiiiiiii i 29
2.1.4 Uninstallation 0N LiNUX ..oiiiiiiiiiii i i e e et eaaeaas 29
2.1.5 Installation on MacOS ... e 30
2.1.6 Uninstallation on MacOSoiiiiiiiii 30

2.2 Using Ozone for the first time e 31
N R o o) =oAL = o P 31
2.2.2 Starting the Debug SeSSIONc.ciriiiiiiiii e 33

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

10

3 Graphical User INEIfACEooeuiiiiiiiiiieii e 34
0 R U =1 = s Yo of [0 1= 35
3.1.1 ACiON Tables .iiviiieiii i e 35
3.1.2 EXecuting User ACLIONS ..iiiiiiiiiiiii i i e s rae e s s nne e s s anee e snanneenas 35

G IUC T B T-1 Lo To [Yot To o = 35

3.2 Change Level Highlightingcccoiiiiiiiii i e 36
G20 TN 1 = 11 o AV o [1 P 37
G S =1 o 11 T = 7 PP 38
02 S R |1 =T o PP 38
3.4.2 VIEW MEBNU .ttt it rateseaesaae e sane s e s e san s snern e ne e ennsanesnnanneaneannans 38
G202 S T o o I 1 = o 1 PP 39
3.4.4 DEDUG MEBNU ittt e e et 39
02 T T o To] F=T =T U P 40
3.4.6 WINAOW MENU .uiiriiiiiiiii s sere s s e sae s s e saesan e sn e rnannernereannerneans 40
3.4.7 HeID MENU ittt i e 41

G0 T o To 1=] o= PP 42
3.5.1 Showing and Hiding Toolbarscciiiiiiiiiiiiiiii i e 42
3.5.2 Arranging Toolbars ...c.ciiiiiiii i 42
3.5.3 Docking and Undocking Toolbarscccciiiiiiiiiiiiii i 42

ST) =) B 1= = - | 43
3.6.1 StaluS MESSAGE .iiiiiiiiiiiit ittt i e e e 43
3.6.2 Window Context INformationcoceviiiiiiiiiii i 43
3.6.3 Connection Statecociiiiiii i e 43

3.7 Debug Information WiNAOWS ...ciiiiiiiiiiiiiii i st eaes 44
3.7.1 CoNtEXE MENU .uiiiiiiii i 44
3.7.2 Display FOrmal ...oiiiiiiii i e 44
3.7.3 WINAOW LayOUL vt i e e 44
3.7.4 Change Level Highlightingccccoiiiiiiiiii 44
G0 T ©o Ta [1Y T o o [0)£ PP 44
3.7.6 Table WIiNAOWS ..ciiviieiiiiiii i s s e s e e s e ae e e an s an e rn e eaneannannes 44

G < T @0 Ta 1SV o T Fo 1= 45
3.8.1 Program EXecution POINt ..o i i e 45
3.8.2 BreaKpoint Bar .oiciiiiiiiiii i e 46
3.8.3 Code Line Highlightingcciiiiiiiiiii i i e e 46
3.8.4 BreaKpPoOints .iiiiiiiii i e 46
3.8.5 Code Profile INformationccvveiiii i enaeans 47

G IS T =Y o] (=TT T o Y= P 49
3.9.1 EXPandable ROWS ..ot i e e 49
3.9.2 Sortable ColUmNS i e 49
3.9.3 Switchable ColUMNS ..ot e e e e e e e reannens 49
3.9.4 Editable ColUmNS i e e 49
3.9.5 Letter Key Navigationcciiiiiiiiiii i i i i e s e e s e nnee e e 49
S T T | =Y ol = - Y PP 49

3.10 WiINAOW LayOUL oottt i et e e et r e e e e s a e a e rrae s 51
3.10.1 Opening and Closing WIiNAOWSiiiiiiiiiiiiiiii i i i e i neeaas 51
3.10.2 UNdocking WIiNAOWSuiiiiiiiiiiii i it a e e e aaaeeas 51
3.10.3 Docking and Stacking WINAOWSccoiiiiiiiiiiiii i i i i e 51

0 I T -1 o T £ 52
3.11.1 Breakpoint Properties Dialogccoiiiiiiiiiiiiiiii i e 52
3.11.2 Code Profile Report Dialogcviiiiiiiiiiiiiiic i e 53
3.11.3 Data Breakpoint Dialogccoiiiiiiiiiiiiii i e 55
3.11.4 Disassembly EXport Dialogccoviiiiiiiiiiiii i i e 56
3.11.5 Find In Files Dialog ...ciiiiiiiiiiiiiiiiii i i s 57
3.11.6 Generic Memory Dialog ..ocviiiiiiiiiiii i 59
3.11.7 Instruction Trace EXport Dialogccooiiiiiiiiiiiiiii i e 60
3.11.8 J-Link Settings Dialog ...ccvviiiiiiiiiii i s 61
3.11.9 System Variable Editorcccoiiiiiiiiiiiii i 62
3.11.10 Trace Settings Dialog ...civiiiiiiiiiiiiii i 63
3.11.11 User Preference Dialog ...cccviiiiiiiiiiiii i i i i e 65

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

11

3.11.12 Quick Find Widgetoeiiii e 70

4 Debug Information WINAOWSooiiiiiiiiiiiiii e e e e e e e e e e e e e e eeeaeannnees 71
4.1 Breakpoints/Tracepoints WINAOWoiiiiiiiiiiiiiii i i aaenneeeans 72
4.1.1 Breakpoint Propertiesccoiiiiiiiiiiiii i s 72
4.1.2 Derived Breakpointsociiiiiiiiiiii i e 72
4.1.3 Breakpoint Dialog ..coceiiiiiiiiiiiiiii e e 72
4.1.4 Editing Breakpoints Programmaticallyccoooiiiiiiiiiiiiii e 73

L T T T) g s N 1= U 73
4.1.6 Offline Breakpoint Modificationccooeiiiiiiiiii e, 73

o A - Yo] (ST YV o o [) PP 73

4.2 Call Graph WIiNAOW ...oiiiiiiiiiii i e e e s s e e e s e reaneeaneanens 74
A R O 1Y 1< V= 74
4.2.2 Table ColUMNS et 74
2 B - Y o] (=T YV o o [) 75
4.2.4 Uncertain ValUBSciiiiiiiiiiii it e e s e e s e e e e aneaas 75
4.2.5 Recursive Call Pathscoiiiiiiiiii e 75
4.2.6 Function Pointer Callscoiiiiiiiiiiii i e 75
L A O] o /=) w1 1= o 1 PP 75
4.2.8 Accelerated Initializationccoviiiiiiii e 75

G B - | | IS = QLT T o 76
G T B O 1Y 1< oV = 76
4.3.2 Table ColUMNS it 76
4.3.3 Unwinding StOP REASONS ..ciiiiiiiiiiiiiiiiiiiie s e aee e 76
4.3.4 Active Call Frame ..o e 76
4.3.5 ConteXt MENU ..ot e e e 77
4.3.6 USEr Pref@renCeS vttt et e e 77

LG A =1 o L= AT o o [1 P 77

4.4 Code Profile WiNAOW ...vieiiiiiiii ettt e e e e e e e e e e aeaeanes 78
Y < o o 78
4.4.2 Code StatistiCS ..oiiviiiiiiiiiii i e e 78

L G T = (= To B o (o] o T @0 18 o} =T ol P 79
N - Y o] (I o o [0) P 79
4.4, FIBrS ittt e 79
O I (] o /=g w1 1= o P 80
A S = [Tt o V= I =T 1 [« 81

L I (o o =] T I T o 82
4.5.1 Command Prompt .o e 82
4.5.2 MESSAGE TYPES tiuriiiitiintiatiantratiate st satt e e arans 82
4.5.3 Script FUNCLION MESSAGES ...iviiiiiiiiii it st rae e aaeenneas 82
4.5.4 MeESSAGE COlOIS vttt e 82
4.5.5 CoNteXt MENU ittt e s e 83
4.5.6 Command HelP .o e 83

4.6 Data Graph WIiNAOW ...eiieiiiiiiiiiiii i e e e s e e e s e e aneaneans 84
T R O 1Y < oV = 84

L S =T U1 /=T o 1 =] Lo P 84
4.6.3 WiINAOW LayoOuUl ...ouiiiiiiiii i e s e e 84
4.6.4 SETUD ViBW ittt e e 84
4.6.5 Graphs ViBW vt e 85
4.6.6 SAMPIES VIBW .uiiiiiiiiiiiiii i e e e 88
4.6.7 TOO DAL ettt e 88
4.6.8 Power Graph Synchronizationccooviiiiiiiii e 89

4.7 Disassembly WINAOW ... e e e e e e e e e e 90
4.7.1 ASSEMDBIY COAE ..ot e 90
4.7.2 EXeCULiON COUNTEIS ..ottt et e e ae e e ae e reanens 90
4.7.3 BasSe AQUAIESS ..ieiiiiiiiiiiiii i 90
A S (T =) g S N 1= U 91
4.7.5 Offline FUNCEIONAlILY .ovviiriiii i e e 91
4.7.6 MIXEA MOAE ..ottt i e e e e 92

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

12

4.7.7 €O WIiNAOW .iriiiiiiiiiiiitiie it e e s e s e e e s an e arereanneaneannanes 92
4.8 Find ReSUILS WiNAOW .ouuiiiiiiiii i i i e e e e et ettt rae e eaneeeaes 93
4.8.1 Search RESUIES i e e e 93
4.8.2 TeXt SANCR .o e 93
S TG T @0] 0} =) ¢ Wl =T o 1 [93
4.9 FUNCHIONS WiNAOW ittt et e e e a e e a et aae e eaneeaaes 94
4.9.1 FUNCLION PropertiEs oo i e e e s ne e e e nnes 94
4.9.2 Inline Expanded FUNCHIONSiiiiiieiiiiiii i e e e s e e e ee e 94
4.9.3 CoNteXE MENU ittt i s e e 94
4.9.4 Breakpoint INdiCators ...ioiiiiiiiiiii i i e 95
L TN - o L= AV o Vo [1 PP 95
L 0 I ©1 0] o 2= I 1= 1= A7 1 o o [) 96
4.10.1 ConteXt MENU it et e 96
4.10.2 Data Breakpoint INdiCatorcoiiiiiiiiii i aeaas 96
4.10.3 Table WiNAOW ..uiiiiiiii i i e et 97
4.11 InStruction TraCe WiNAOW ..oiiiiiiiiiii i i i e e e it a e aeeeas 98
L s O Y = o [o 98
L T 7 1 0 1=3 o o U ot o o e 1Y A P 98
4.11.3 INStruction STaCK ..coiiiiiiii i 98
4.11.4 Call Frame BloCKS ..uuiiiiiiiii it i e 98
4.11.5 Backtrace Highlighting ..o e 98
T ST o [0 <) V£ PP 99
L T A ©1o] o) o= o =1 o 1 P 99
4.11.8 Selective TraCing ..cooeieiieii i e e eeaas 100
2 I S T e o 1o] o 100
4.11.10 Automatic Data Reloadccvviiiiiiiiiiii i e 100
4.11.11 LimiEations uiieeiiiiii i e 100
4.12 J-Link Control Panel ... i i e e i 101
A R ©)V <1 oV 11 PR 101
4.13 Local Data WinAoW ...oiiuiiiiiii i i 103
L G T R © 1V =T oV 11 TP 103
4.13.2 AUEO MOGE ittt e 103
4.13.3 ConteXt MeNU vt e e 103
4.13.4 Data Breakpoint INdiCatorooiiiiiiiiii i i e e 104
4.13.5 Table WinAOW ..o e e 104
I S (=T o To] VA1 [Vo [1 PP 105
4.14.1 WINdOW LayoOUL .iviiiiiiii i e s e e e e s e s e n e se s e e anernaanens 105
4.14.2 BaSe AGAIESS ittt i i e e e 105
4.14.3 SymbOl Drag & DrOP .iiviiriiieiiiiiieiitiasi s aesasesrsaseanernesanssneeneeaneaneanes 106
O S Yo Lo - | 106
4.14.5 Generic Memory Dialogcoeiieiiieii s 106
4.14.6 Change Level Highlightingccoiiiiiii e 107
4.14.7 Periodic Update ...iiviiiiiiii i s e 107
2 I S U £ T o 1 o 11 | 107
4.14.9 CopY @nd Paste ..icviiiiiiiii i i e 107
L 1 O I ©o o =4 ol 1 1= o [107
4.14.11 MuUltiple INStANCES .iuviiriiiiiiiie i s e e e e e ananes 108
4.15 Memory Usage WINAOW ..ot et e e e e e e e e e e e e re e neaeaeanens 109
L T R O)V =T oV 11 PR 109
O T T =T [U1 = o g = 109
4.15.3 WINdOW LayOuUL .iviiiiiiii i e s e s e s s e r e r e e anans 109
N T Y o[1 o 110
o NS TR T N o =] = [t o] [PP 110
4.15.6 ConteXt MeNU .iiiiiii i s e e 110
4.16 Power Graph WIiNAOWiiiiiiiiiiii i ere s s e e s e a e re e anenneanans 112
4.16.1 Hardware RequUIiremMentsuiiiiiiiiiniireiirirenneaesane e nesanssnesnnsaneaneans 112
T A Y <1 1 | o PP 112
N T TR U 1= T 112
4.16.4 Cursor Synchronizationcivviiiiiii i e neaeans 112
4.16.5 Sample Limit .o 113

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

13

4.17 Reqgisters WINAOWuiiiiiiiiii ittt e e e e a e e aneeas 114
0 T XV I T 11T 114
N A T =T] /=Y gl] o 11 o1 114
s G T =) ol o 1= [£ 115
4.17.4 Processor Operating MOoiviiiiiiiiiiii e 115
4.17.5 ConteXt MeNU vt i st e 115
s 2 < TN =1 o] [T 1 T [1Y 116
4.17.7 MuUltiple INSTaNCES ..iiiviiriii i e 116
TS T = 1 1T T T [1Y 117
4.18.1 RTOS PlUGIN .ttt e a e e s e s e e e anese e reaneannanns 117
4.18.2 RTOS INformational ViEWS .uiiiiiiiiiiiiiiiii i riiaseerrinseesrinnnesrnnnnes 117
4.18.3 Task Context ACTiVation ...viiiiiiiiiiiii i i irre i raarereanns 118
I T S 00) =) ol 1 =T o 118
4.19 SoUIrCE FilE@S WiNAOW iuuuiiiiiiiiisiiiiesriirerriaeerriaeesraasseranasessranseesranarssranannes 119
4.19.1 Source File Information ..uvuiiiiiiiiiiii i i i i i s rananeeras 119
4.19.2 UNresolved SOUIMCE FilES .uuiiiiiiiiiiiiiii it i riinsre s riseesransessrananeenns 119
T 0 T T 00) =) ol 1 =T o 119
4.19.4 Table WiNAOW uuiiiiiiiiiiiiiesiiieesrirerrrersranereraraarerraaeesranaseerannnees 120
0 O Y o T T ol <INV =1 YT e 121
4.20.1 Supported File TYPeS uviiiiiriiiiiiii i e ane e e nneaneaeans 121
4.20.2 EXECULION COUNTEIS tiiiiiiiiiiiii st s e s e i eeesseeeasnsasereessesrrannnnnnes 121
4.20.3 Opening and Closing DOCUMENESoiviiiiiiiiiii e 121
4.20.4 Editing DOCUMENES .. .oiuiiiiii ittt e e e e e neaes 121
4.20.5 Document Tab Bar ...ciiiiiiiii i 122
4.20.6 Document Header Bar ...ciiiiiiiiiiiiiiii i i e et e et et aaas 122
4.20.7 EXPression TOOIIPS vuiieiiriiiiiii i i e s e e e e 122
4.20.8 SYmMDOl TOOITIPS viuriiiiitii i a i e e 122
4.20.9 Expandable SoUrce LiNES ...iciiiiiiiiiiiiiii i i aneeneanes 122
4.20.10 Key BindinNgs ..couiiniiiiiiiiiii e 123
4.20.11 Syntax Highlighting ..o 123
4.20.12 Source Line NUMDEIS .iviiiiiiiiii i riie i e srinanessanssesrannsrerannns 123
0 10 TR 50) /=) 4 ol 1 =T o 1 124
4.20.14 Font AdJUSIMENT ..o 125
4 & TR I8 TR 6o Y [T AT T T [T 125
4.21 Terminal WinAOW oo it r it 126
4.21.1 Supported IO TeChNIQUES ...iviiriiiii i i ane e 126
4.21.2 Terminal Promipt .o e e e 126
0 N TR 00) =) ol 1 =T o 126
2y 1 2 1= 11 TSI A A 1 T [1 128
O T Y = {1 o J 128
N A O 1V o L 128
L G T (ol =T 01 o o] o I o =1 o ¢ U= 128
4.22.4 Frame TOOIIPS tuviiiiiriiiiii i i e e e 128
2 S I [5 9 ==Y o= | 1 129
T2 TS Y- 0 a1 (=T O 8 [=Yool P 129
0 R A o 1 V7Y 1 | o 129
A < T N o 1= o U ot oo o TN o] 129
4.22.9 Backtrace Highlighting ..o e 130
4.22.10 Task Context Highlightingccoiii i 130
0 N R N o 1 =T = ot o o o 131
4.22.12 Time Reference POINES .uvviiiiiiiiiiiii it it i i s riiaae e rrnnaeesrans 131
4.22.13 SetliNGS viiriiiiiiiii i s 131
0 T S 50) =) 4 w1 =T o 1 132
4.23 Watched Data WinNAOW .iiiiiiiiiiiiie i riiie s e ssiaressanaresraasesranasrerannneeres 133
4.23.1 Adding EXPreSSIONS ...cuieiiie ittt e e e e e e e e 133
4.23.2 LOCaAl Variables ittt i i e 133
G TG T I VST 1Y =) o o = 133
G T = o] 1Y AT 1 5 T [1Y 133
0 T S 50) =) ol 1 =T o 133

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

14

5 Debugging WIth OZONEccooi oo e e e e e e e e eeeeeeennaees 135
T R = oo) =Tt {1 136
5.1.1 Project File EXample .o s e 136
5.1.2 0pening Project Files ...ciiiiiiiiii i i i 136
5.1.3 Creating Project Files ...ciiiiiiiiiiiiii i e 136
5.1.4 Project Setlings ..coviiiiii i s 136

o T 1= = i P 137

5.2 PrOgram FilES i i e 138
5.2.1 Supported Program File@ TYPeS ..iviiiiiiiiiiiiiiii i e 138
5.2.2 Symbol Information ..o e 138

5.2.3 0pening Program Filesciiiiiiiiiiiiiiii i e 138
5.2.4 Data ENCOdiNg ..uoiiiiiiiiiiiiiii i e e 138

5.3 Starting the Debug SESSION ...uiiiiiiiiiiiiii i i e e e i 139
JSIHC T8 B @70 o o 1=To u T o T 17 [Yo = PP 139
5.3.2 Initial Program Operation ...cccviiiiiiiiiii i i e 139
5.3.3 Reprogramming the Startup SeqUENCEcciiiiiiiiiiiiiiii i e 140
5.3.4 Visible EffEeClS .iiviiiiiii i s e v 140

5.4 Register Initializationcccoiiiiiiiiii e 141
o R @ 1= P 141
5.4.2 Register ReSEt ValUBS ...ciiiiiiiiiiiiiiiii i e 141

5.4.3 Manual Register Initializationccooiiiiiiiiiiii 141

5.4.4 Project-Default Register Initializationcccoviiiiiiiiiiiiiii e 141

5.5 Debugging Controls ..uuiiiiiiiiii i i 143
T T A =] = P 143

T T A =T R P 143

ST TG T =] U1 o o 1P 144

T T o - | P 144

ST 10 T U | o T o TP 144
5.5.6 Set Next Statement ... 144
5.5.7 St NeXt PC .ot e e e 144

oS T = =T | oo 11 1 = 145
5.6.1 SoUrce BreaKpoOints ...ciiiiiiiiiiiiiiiiiii i i e 145
5.6.2 Instruction Breakpoints ...ccciiiiiiiiiiiiiiii i e 145
5.6.3 Derived BreaKpoints ...coiiiiiiiiiiiiiiii i i i 145
5.6.4 Advanced Breakpoint Propertiesc.iciiiiiiiiiiiiiiiiiii i i i e 145
5.6.5 Permitted Implementation TYPES ...coiiiiiiiiiiiiii i e 145
5.6.6 Flash BreaKpoOints ...ciiiiiiiiiiiiiiiii i i i e et e e a e e aee s 146
5.6.7 Breakpoint Callback FUNCLIONS ...oiiviiiiiiii i e 146
5.6.8 Offline Breakpoint Modificationc.cccoiiiiiiiiiiiiii e 146

5.7 Data BreaKpoints .o i 147
5.7.1 Data Breakpoint Attributescccoiiiiiiiiiii 147
5.7.2 Editing Data BreaKpointsccviiiiiiiiiiiii i i i i e 147

5.8 Program INSPECHION it it 148
5.8.1 EXeCULION POINE .. i e e e e e e e e e nas 148
5.8.2 Static Program ENtitiesoviiiiiiiiii i i e 148
5.8.3 Data SymboOls ..o e 148
5.8.4 Symbol TOOIIPS .iiiiiiiii i e 149
5.8.5 CaAll STACK vttt s 149
5.8.6 Target ReGiSTEIS .uviiiiiiiiiiiiii it i i e e s e s e 149
TR S T A - | o 1< A\ =T 0 g Lo Y T 149
5.8.8 Inspecting @ RUNNING Programiiiiiiiiiiiii i i siiree s nieee s nnnee e 149

5.9 Downloading Program FileScciiiiiiiiiiii i i e 151
5.9.1 Download Behavior COmMPariSONiiieviiiiiiiieiiiiiie i iiiraieeneeaiaeaans 151
5.9.2 Script Callback Behavior COmMpariSONcciiiiiiiiiiiiiii i i ciee e aes 151

5.9.3 Avoiding Script FUNction RECUISIONScciiiiiiiiiiiiii i i i i 151
5.9.4 Downloading Bootloadersccoiiiiiiiiiiiiii i e 152

5.10 Terminal IO oottt e e e 153
5.10.1 Real-Time TransS er touuiiiiieii i r s e ea e anneaneannas 153
5.10.2 SWO ciiiiiiii i e 153

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

15

Ozone User Guide & Reference Manual (UM08025)

5.10.3 Semihosting ...cooiiiii e 153
5.11 Working With EXPreSSiONSc.ciuiiiiieii it e e e aeenens 154
5.11.1 Areas of Application ...cciiiiiiiiii i e 154
o I A @ 0T =] Lo =P 154
o0 N TR O o = =) e] = 154
5.11.4 TYPE CaAStS oottt e 154
5.12 Locating Missing SOUrCe FileSciiiiiii e e 156
5.12.1 Causes for Missing Source Filesccoiiiiiiiiiii e 156
5.12.2 Missing File INdIiCatorscoiieiiiiii e 156
5.12.3 File Path Resolution SEqUENCEccviiriiiiiiiii i ea e 156
5.12.4 Operating System SpeCifiCsuiiiiiiiiiiiiiii i e 157
5.13 Se ttmg 15 T I 1= T 158
5.13.1 Trace Features OVEIVIEWcciieiiiiiiiiiiiiii i resaasae s 158
5.13.2 Target ReqUIrEmMENES ...cuiiiiiiiiiiii i s 158
5.13.3 Debug Probe Requirements ..o 158
5.13.4 Trace Settingsoiiiiiiiiiiiiiii e 158
5.14 Setting Up The Instruction Cache ... 160
5.15 SelectiVe TraCing ...ociuiieiiei i et e e e e 161
5.15.1 OVEIVIEW .ttt st 161
T B T =T 1 1= 0 1=) o= 161
5.15.3 TraCePOINES 1ttt e 161
T T Y ol o 1= 161
5.16 Advanced Program Analysis And Optimization Hintscccooviiiiiiiiiiiiciiens 162
5.16.1 Program Performance Optimization ..o 162
5.17 Messages And NOLIfications ..o s 164
5.17.1 Message FOrmat ..o.oiiiiiiiiiiii i 164
5.17.2 MeSSAGE COURS ..ueiiiiniiiii ittt et et 164
5.17.3 LOGQGING SINKS ..ruiiiiiiii e e 164
5.17.4 Debug CONSOIEuiuiiiiiie et 164
5.17.5 Application Logfilecciiiiiiiiiii i e 164
5.17.6 Other Logfiles ... e 164
5.18 Other Debugging ACHIVItIESciuieiii e 165
5.18.1 Finding TeXt OCCUITENCESouiiieiiieee et e e e e raeees 165
5.18.2 Saving And Loading MmOy ..couieiiiiiiii i 165
5.18.3 Relocating Symbols ... 165
5.18.4 Terminal INPUL ..ooviiiiii e e 165
5.18.5 Closing the Debug SeSSIONc.oieiiiiniiiii i 165
SCrPtiNg INTEITACEo c e e 166
LT R] o =Tt oY of o 1 PP 167
LT A R Yo oo o =T o e T =T P 167
6.1.2 Script FUNCLIONS OVEIVIEW ...uiiiiiii i e e e e e 167
6.1.3 Event Handler FUNCLIONScviiiiiiiiiiii i e re e naeas 167
6.1.4 USEr FUNCHIONS .uiiiiii it e e e e s e e e e rneaneas 168
6.1.5 Process Replacement FUNCLIONSoooviiiiiiiiiiiiiii e e 168
6.1.6 Debugger API FUNCHIONS ..iiiiiiiiiiiii i s e e e e e e e 168
6.1.7 Process Replacement FUNCLIONScovviiiiiiiiiiii i 168
6.1.8 Executing Script FUNCLIONSviiiiiiiiiii e e aeas 171
6.2 RTOS AWAreness PlUGIN ...oouciiiiiiiiiiii it e e e s sne e aan s rneaneeaneenes 172
LT R Yol o o) o =T o e T =T =P 172
6.2.2 Loading the PlUGIN ..o e ee s 172
6.2.3 Script FUNCLIONS OVEIVIEW ...uiiiiiiiiiiii i e e e eeaeas 172
6.2.4 DebUGger AP ..ot 172
6.2.5 Writing the RTOS PlUgiN ..oiiiiiiiiiii i e e e 173
6.2.6 Compatibility with Embedded Studioccvvviiiiiiiiiiiiie e 178
6.2.7 DLL PlUGINS .ttt sttt r e e s r s s e e 178
6.3 Incorporating a Bootloader into Ozone's Startup Sequencecveeviviiiiieinnnns 179

© 2013-2019 SEGGER Microcontroller GmbH

16

A 2 o] = o |3 RSP 181
2% R/ | LS LI B LT ol] 0] o] PP 182
7.1.1 FrequencCy DesCriplor vt it i s e e 182
7.1.2 Source Code Location DeSCriplor ...cviiiiiiiiiiiicii i e 182

/2% WG R @70] (o] gl B T=T= ol] 0] o] 182
727 P S o o L B T=T=Yol 1 0] o] 182
7.1.5 Coprocessor Register DesCriptor .oouvviiiiiii i i i e e nes 183

7.2 System CoONStaNtS .uoiiiiiii i i i e 184
/2072 R o [0 1Y | =] o =T =P 184
7.2.2 Target Interfaces ..oviiiiiiiii i e 184
7.2.3 Boolean Value Constantscciviiiiiiiiiiii i e 184
7.2.4 Value Display FOrmats . .cciiiiiiiii i i i 184
7.2.5 Memory Access WiIdthsciiiiiiiiiiiii i i 184
7.2.6 ACCESS Ty PO tiiiiittiiiiite sttt st ettt et aate et taaneessaannessaanneessanneessannneeeannnes 185
/2% 2 SR ©'o o] 1=Tot u [o T 17 Fo Yo == P 185
7.2.8 RESEL MOGES ..iiuiiiiiii ittt et a e e 185
7.2.9 Breakpoint Implementation TYPESoiviiiiiiiiiii i i i e 185
7.2.10 TraC@ SOUICES .iiiutiiiteraneeiaterantesaeesaanesaneesanesaneeranesaneesanesannesaneernnesnns 186
7.2.11 Tracepoint Operation TYPES ..uviiiiiiiiiiiiiii it it s e raanneeaaans 186
7.2.12 Newline FOrmats .oiiiiiiiiii i e e 186
7.2.13 Trace Timestamp FOrmatsooiiiiiiiiiiii i i i e 186
7.2.14 Code Profile EXport FOrmatscoiviiiiiiiiiiiiiii i i i eee s 187
7.2.15 Code Profile EXport Optionsoiviiiiiiiiiiii i i e 187
7.2.16 SesSion Save FIags ..oiviiiiiiiiii i 187
7.2.17 FONt Identifiers .oiiviiiiiii i s e 187
7.2.18 Color Identifiars .oviiiiiiii i i 188
7.2.19 User Preference Identifiersccooiiiiiiiiii i es 189
7.2.20 System Variable Identifierscooiiiiiiiiiiiiii e 191

7.3 Command Line ArQUMENTES ..iiiiiiiiiiiiit i i i e e it r e it aae e raae e riaeaaneeas 193
7.3.1 Project Generation ...c.iiiiiiiiiiii i i i 193
7.3.2 Appearance and LOGQiNg ...ciiiiiiiiiiiiiiiiiii i i e 193

2 B B 11 ¢ =Toi o] VA - Tl o = 194
7.4.1 Environment Variablescooiiiiiiiii 194

7.5 Startup Sequence FIOW Chart ... i e 195
7.6 Errors and Warmings ..ooiiiiiiiiiiiiiii i i e 196
7.7 ACHION TableS it e 201
7.7.1 Breakpoint ACLIONS .ot 201
7.7.2 Code Profile ACHIONS ...uiiiiirii i e 201
7.7.3 DEDUQG ACHIONS ittt i i e e e 202
0 A S = || Yot o [0 o =P 202

7.7.5 ELF ACHIONS 1ttt ittt re e s e e e v r e e 202
7.7.6 File ACHIONS .ottt e e 203
7.7.7 FINA ACHIONS .ottt e 203
7.7.8 Help ACHIONS it e e 203
7.7.9 J-LIiNK ACHIONS uiiitiiiii i i e 203
7.7.10 OS ACHIONS ittt e 204
7.7.11 Project ACTIONS .uviiiiiii i i e 204
7.7.12 SCHIPE ACHIONS it i i i 205
7.7.13 Target ACHIONS ..viiiiiiii i it e i e 205
W2 4% S o Yo = Yo o] 1= PP 205
7.7.15 TOOIDar ACHIONS .iiiiieiiiiii e e 205
/2 S T 1 = [oLV 0 o = 206
24 /2 U) 111V AV u o o - 206
7.7.18 ShOW ACHIONS .iriiiiiiiii i e e e 206
7.7.19 WiINAOW ACHIONS ittt iiiaese e rass e ranesne e e snerreanesneaaraaneannanes 206
7.7.20 WatCh ACLIONS .iiiriiiiiii e e e 207

2% S T U =1 = g o of (o 1= 208
7.8.1 File ACHIONS .ottt e 208
7.8.2 FINA ACHIONS .ottt e 212

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

17

Ozone User Guide & Reference Manual (UM08025)

2% < T R oo [ot o [o 1= P 213
7.8.4 Edit ACHIONS ittt 214

7.8.5 WINdOW ACHIONS vttt a e e 217
7.8.6 TOOIbAr ACHIONS .viiiiiiii i e e 220

2% T Y 1 10X AV Yo o o] 1= P 221
7.8.8 ULty ACLIONS oiiiiiiiii i e 224
7.8.9 SCHIPE ACHIONS oottt et 225
7.8.10 DebUg ACHIONS ...ueii i 226
7.8.11 Help ACHIONS .iiriiiiiii i e 232
7.8.12 Project ACLIONS ..uiiiiiiiiiiiiiii i e e 233
7.8.13 Code Profile ACHIONS ..iiiieiiiiiii i i e ane e 243
7.8.14 Target ACLIONSiiiiiiii 246
7.8.15 J-LinK ACHIONS ittt e e 252
7.8.16 OS ACHIONS ittt e 253
7.8.17 Breakpoint ACHIONS .iiviirii i 253
/2 T R =] I e Y o o = 263
2% T = R 1 = [ol Vo] o = 265
7.8.20 WatCh ACHIONS .ottt e 267

28 B - NV = 1ol 1o L O = =T <P 269
7.9.1 Threads Class .iiviiiiiiiiriie it iareae e ars e sarsane e anneaneannannes 269
7.9.2 DEDUQG ClaSS ..ueiuiiiiieiii it 271
7.9.3 TargetInterface Classooeiieiiiiiii e 272

LS TS YU o] o o o AU 274
D GlOSSANY ..ttt e e e e e e e e e 275

© 2013-2019 SEGGER Microcontroller GmbH

Chapter 1

Introduction

Ozone is SEGGER’s user-friendly and high-performance debugger for ARM Microcontroller
programs. This manual explains the debuggers usage and functionality. The reader is
welcome to send feedback about this manual and suggestions for improvement to sup-
port @egger.com

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

19 CHAPTER 1 What is Ozone?

1.1 What is Ozone?

Ozone is a source-level debugger for embedded software applications written in C/ C++ and
running on ARM-Microcontroller units. It was developed with three design goals in mind:
user-friendly, high performance and advanced feature set. Ozone is tightly coupled with
SEGGER’s set of J-Link debug probes to ensure optimal performance and user experience.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

20 CHAPTER 1 Features of Ozone

1.2 Features of Ozone

Ozone has a rich set of features and capabilities. The following list gives a quick overview.
Each feature and its usage is explained in more detail in chapter 3 as well as later chapters
of the manual.

1.2.1 Fully Customizable User Interface

Ozone features a fully customizable multi-window user interface. All windows can be un-
docked from the Main Window and freely positioned and resized on the desktop. Fonts,
colors, and toolbars can be adjusted according to the user’s preference. Content can be
moved amongst windows via Drag&Drop.

1.2.2 Scripting Interface

A C-language scripting interface enables users to reconfigure Ozone’s graphical user inter-
face and most parts of the debugging workflow via script files. All actions that are accessible
via the graphical user interface have an affiliated script command that can be executed
from script code or from the debuggers console window.

1.2.3 RTOS Awareness

Ozone’s RTOS Window displays RTOS-specific debug information and is controlled by a
JavaScript plugin. By implementing new plugins, users are able to add support for any
embedded operating system of their choice. Ozone ships with RTOS-awareness plugins for
embOS, FreeRTOS and ChibiOS out of the box. In addition to JavaScript plugins, Ozone
also maintains support for C-language DLL plugins.

1.2.4 Code Profiling

Ozone’s code profiling features assist users in optimizing their program code. The Code
Profile Window displays CPU load and code coverage statistics selectively at a file, function
or instruction level. Code profiles can be saved to disk in human-readable or in CSV format
for further processing. Ozone’s code windows display code profile statistics inlined with the
code. A color coding scheme is used to indicate to users source code lines and machine
instructions that can be removed or improved.

1.2.5 Power Profiling

The Power Graph Window tracks the current drawn by the target at resolutions of down to
1 microseconds and displays the resulting graph in an interactive signal plot.

1.2.6 Data Graphs

Symbol values and values of arbitrary C-style expressions can be traced at time resolutions
of down to 1 microseconds. The resulting time signals are visualized within the Data Graph
Window.

1.2.7 Timeline

Ozone’s Timeline Window visualizes the course of the programs call stack over time. It
provides advanced navigation features that allow users to quickly understand relative and
absolute call frame sizes and positions, which make it a great profiling tool as well.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

21 CHAPTER 1 Features of Ozone

1.2.8 Instruction Trace

Ozone is able to trace program execution on a machine instruction level. The history of
executed machine instructions is accessible via the Instruction Trace Window and — used
in conjunction with the call stack window — gives the developer additional insight into the
program’s execution path.

1.2.9 Unlimited Flash Breakpoints

Ozone integrates SEGGER'’s flash-breakpoints technology which allows users to set an un-
limited number of software breakpoints in flash memory.

1.2.10 Wide Range of Supported File Formats

Ozone supports a wide range of program and data file formats:

e ELF or compatible files (*.elf, *.out, *.axf)
e Motorola s-record files (*.srec, *.mot)

e Intel hex files (*.hex)

e Binary data files (*.bin)

1.2.11 Peripheral and CP15 Register Support

Ozone supports System View Description files that describe the memory-mapped (periph-
eral) register set of the target. Once an SVD-File is specified, the register window displays
peripheral registers and their bit-fields next to the core registers of the target. Addition-
ally, the Registers Window allows users to observe and edit coprocessor-15 registers of
the target.

1.2.12 Extensive Printf-Support

Ozone can capture printf-output by the embedded application via SEGGER’s Real-Time
Transfer (RTT) technology that provides extremely fast I0 coupled with low MCU intrusion,
the Cortex-M SWO capability, and ARM’s semihosting.

1.2.13 Advanced Memory Window

Ozone’s Memory Window is editable and has many advanced features such as disk-IO,
periodic updating and copy/paste of clipboard content. An unlimited number of memory
windows can be opened at the same time.

1.2.14 Disassembly Export

Ozone includes a powerful disassembler that is able to export program disassembly in form
of a single recompilable GNU-syntax assembly code file.

1.2.15 Instruction Set Simulation

Using J-Link’s instruction set simulation capability, Ozone achieves one of the fastest step-
ping performances of any debugger for embedded systems on the market.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://developer.arm.com/embedded/cmsis

22 CHAPTER 1 Requirements

1.3 Requirements

To use Ozone, the following hardware and software requirements must be met:

Windows 2000 or later operating system

1 gigahertz (GHz) or faster 32-bit (x86) or 64-bit (x64) processor

1 gigabyte (GB) RAM

100 megabytes (MB) available hard disk space

J-Link or J-Trace debug probe

JTAG or SWD data cable to connect the target with the debug probe (not needed for
J-Link OB)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

23 CHAPTER 1 Supported Operating Systems

1.4 Supported Operating Systems

Ozone currently supports the following operating systems:

Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Windows Vista Microsoft
Windows Vista x64
Windows 7

Windows 7 x64
Windows 8

Windows 8 x64
Windows 10

Linux

macO0S/0S X

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

24

1.5 Supported Target Devices

CHAPTER 1

Supported Target Devices

Ozone currently works in conjunction with microcontrollers (target devices) based on the
following architecture profiles:

1.5.1

1.5.2

1.5.3

ARM

ARM7
ARM9
ARM11
Cortex-M
Cortex-A
Cortex-R

RISC-V

RV32I

Target Support Plugins

Ozone’s target support is based on a generic plugin API that simplifies the process of ex-

tending device support to new MCU architectures.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

25 CHAPTER 1 Supported Debug Interfaces

1.6 Supported Debug Interfaces

Ozone communicates with the target via a J-Link or J-Trace debug probe. Other debug
probes are not supported.

J-Link/]-Trace support the following target interfaces:

e JTAG
SWD
e CJTAG

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

26 CHAPTER 1 Supported Programming Languages

1.7 Supported Programming Languages

Ozone supports debugging of programs that were written in:
e C
o C++

It is likely that applications written in programming languages other than the ones listed
above can be debugged satisfactory using Ozone, as ELF debugging information is stored
in @ mostly language-independent format.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

Chapter 2

Getting Started

This chapter contains a quick start guide. It covers the installation procedure and explains
how to use the Project Wizard in order to create a basic Ozone project. The chapter com-
pletes by explaining how a debug session is entered.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

28 CHAPTER 2 Installation

2.1 Installation

This section explains how Ozone is installed and uninstalled from the operating system.

2.1.1 Installation on Windows

Ozone for Windows ships as an executable file that installs the debugger into a user-spec-
ified destination folder. The installer consists of four pages and guides the user through the
installation process. The pages themselves are self-explanatory and users should have no
difficulty following the instructions.

42 3-Link Debugger ¥1.71a Setup i]

Chooze Install Location
hoose the Folder in which to install 3-Link Debugger ¥1.71a. %
=

Setup will install J-Link Debugger ¥1.71a in the Following Folder. To install in a different Folder,
click Browse and select another Folder, Click Mext to continue,

Destination Folder

I C:AProgram Files (x36)3EGGERI-Link Debugger ¥1.71a Browse, .. |

Space required: 15,5ME
Space available: 1.2GE

ullsaft Install Swstem w2 46

< Back I Mext = I Zancel

First page of the windows installer

After installation, Ozone can be started by double-clicking on the executable file that is
located in the destination folder. Alternatively, the debugger can be started by executing
the desktop or start menu shortcuts.

2.1.1.1 Multiple Installed Versions

Multiple versions of Ozone can co-exist on the host system if they are installed into different
folders. Application settings, such as user interface fonts, are shared amongst the installed
versions.

2.1.2 Uninstallation on Windows

Ozone can be uninstalled from the operating system by running the uninstaller’s executable
file (Uninstall.exe) that is located in the installation folder. The uninstaller is very simple to
use; it only displays a single page that offers the option to keep the debuggers application
settings intact or not. After clicking the uninstall button, the uninstallation procedure is
complete.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

29 CHAPTER 2 Installation

2.1.3 Installation on Linux

Ozone for Linux ships as an installer (.deb or .rpm) or alternatively as a binary archive
(.tgz).

2.1.3.1 Installer

The Linux installer requires no user interaction and installs Ozone into folder /opt/ SEG-
GER/ozone/<version>. A symlink to the executable file is copied to folder /usr/ bin. The
installer automatically resolves unmet library dependencies so that users do not have to
install libraries manually.

SEGGER provides two individual Linux installers for Debian and RedHat distributions. Both
installers behave exactly the same way and require an Internet connection.

2.1.3.2 Binary Archive

The binary archive includes all relevant files in a single compacted folder. This folder can
be extracted to any location on the file system. When using the binary archive to install
Ozone, please also make sure that the host system satisfies all library dependencies (see
Library Dependencies on page 29).

2.1.3.3 Library Dependencies

The following libraries must be present on the host system in order to run Ozone:

e libfreetype6 2.4.8 or above
e libfontconfigl 2.8.0 or above
o libext6 1.3.0 or above
e libstdc++6 4.6.3 or above
e libgccl 4.6.3 or above
o libc6 2.15 or above

Please note that Ozone’s Linux installer automatically resolves unmet dependencies and
installs library files as required.

2.1.3.4 Multiple Installed Versions

Multiple versions of Ozone can co-exist on the host system if they are installed into different
folders. Application settings, such as user interface fonts, are shared amongst the installed
versions.

2.1.4 Uninstallation on Linux

Ozone can be uninstalled from Linux either by using a graphical package manager such as
synaptic or by executing a shell command (see Uninstall Commands on page 29).

2.1.4.1 Uninstall Commands

Debian

sudo dpkg -remove Ozone

RedHat

sudo yum remove Ozone

2.1.4.2 Removing Application Settings

Ozone'’s persistent application settings are stored within the hidden file “$Home/.config/
SEGGER/Ozone.conf”. In order to erase Ozone’s persistent application settings, delete this
file and re-login to the OS.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

30 CHAPTER 2 Installation

2.1.5 Installation on macOS

Ozone for macOS ships as an installer or alternatively as a disk image. The same installer
or disk image is used for both 32 and 64 bit systems since it provides universal binaries.

2.1.5.1 Installer

The macOS-installer installs Ozone into the application folder. It provides a single installa-
tion option, which is the choice of the installation disk.

]

w Install Ozone - the |-Link Debugger V2.22d

Select a Destination

© Intreduction Select the disk where you want to install the Ozone - the J-

© License Link Debugger V2.22d software.
& Destination Select ‘ .
‘-| l
@ Installation Type [o
@ Installation U
@ Summary Macintosh HD

2,18 GB available

59,81 GE total
’ _ Installing this software requires 71,7 MB of space.
/SEGGER
Go Back Continue
MacOS Installer

2.1.5.2 Disk Image

The disk image mounts as an external drive that contains the Ozone executable and its
user documentation. Ozone can be run from the mounted disk out of the box — no further
setup steps are required.

2.1.5.3 Multiple Installed Versions

Currently, only one version of Ozone can be installed on macOS. Installing a version will
overwrite the previously installed version.
2.1.6 Uninstallation on macOS

To uninstall Ozone from macQOS, move its application folder to the trash bin. The application
folder is “/applications/SEGGER/ozone".

2.1.6.1 Removing Application Settings

Ozone’s persistent application settings are stored in the hidden file $Home/Library/Prefer-
ences/com.segger.Ozone.plist. In order to erase Ozone's persistent application settings,
delete this file and re-login to the OS.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

31 CHAPTER 2 Using Ozone for the first time

2.2 Using Ozone for the first time

When running Ozone for the first time, users are presented with a default user interface
layout and the Project Wizard pops up.

2.2.1 Project Wizard

The Project Wizard provides a graphical facility to specify the required settings needed to
start a debug session. The wizard hosts a total of three settings pages that are described in
more detail below. The user may navigate forward and backward through these pages via
the next and back buttons. Note that the Project Wizard will continue to pop up on start-
up until the first project was created or opened.

" Mew Project Wizard 21xl

Target Device
Choose a Target Device

Device

| sTM3zF407IG [

Petipherals (optional)

I C:ikonfig/Peripherals)STM32F4071G, svd |

= Back fext = Cancel

First page of the Project Wizard

Device

On the Project Wizard’s first page, the user is asked to select the target to be debugged on.
By clicking on the dotted button, a complete list of MCU’s grouped by vendors is opened in
a separate dialog from which the user can choose a target device.

Peripherals

The user may optionally specify a peripheral register set description file that describes the
memory-mapped register set of the target. If a valid register set description file is specified,
peripheral registers will be observable and editable via the debugger’s Registers Window
(see Registers Window on page 114).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

32

CHAPTER 2 Using Ozone for the first time

" Mew Project Wizard 2

Connection Settings
Choose a Target and Host Interface

Target Interface Target Interface Speed
[178G 4 I =]
Hast Interface Serial Mo {optional)

& i

< Back Mext = Cancel

Second page of the Project Wizard

On the second page of the Project Wizard, J-Link settings are defined.

Target Interface

The target interface setting specifies how the J-Link debug probe is connected to the target.
Ozone currently supports the JTAG and SWD target interfaces.

Target Interface Speed

The target interface speed parameter controls the communication speed with the target.
The range of accepted values is 1 kHz to 50 MHz. Some MCUs require a low, others an
adaptive target interface speed throughout the initial connection phase. Usually, the tar-
get interface speed can be increased after the initial connection, when certain peripheral
registers of the target were initialized. In case the connection fails, it is advised to retry
connecting at a low or adaptive target interface speed.

Host Interface

The host interface parameter specifies how the J-Link debug probe is connected to the PC
hosting the debugger (host-PC). All J-Link models provide a USB interface. Some J-Link
models provide an additional Ethernet interface which is especially useful for debugging an
embedded application from a remote host-PC.

Serial No. / IP Address

In case multiple debug probes are connected to the host-PC via USB, the user may enter
the serial number of the debug probe he/she wishes to use. If no serial number is given,
the user will need to specify the serial number via a dialog that pops up when starting the
debug session. If Ethernet is selected as host interface, the caption of this field changes to
IP Address and the user may enter the IP address of the debug probe to connect to.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

33

CHAPTER 2 Using Ozone for the first time

" Mew Project Wizard 2

Data File
hoose the Program to be debugged

Drata File {optional)

IC:,I'Examp|ESII'B|i|‘|k‘;.-'_5Tf"'|324|:|G,I'B|i|‘|k‘;.-'_5Tf‘\"'|324|:|G.E":l |

< Back Einish Cancel

Last page of the Project Wizard

On the last page of the Project Wizard, the user specifies the debuggee.

Data File

This input field allows the user to specify the desired program to debug. Please note that
only ELF or compatible program files contain symbol information. When specifying a pro-
gram file without symbol information, the debugging features of Ozone are limited (see
Symbol Information on page 138).

Applying Project Changes Persistently

Project settings applied via the Project Wizard are persistent, i.e. remain valid after the
debugger is closed. In addition, any manual changes carried out within the project file are
persistent. However, project settings applied by other means for instance via the System
Variable Editor are only valid for the current session.

Completing the Project Wizard

When the user completes the Project Wizard, a new project with the specified settings is
created and the source file containing the program’s entry function is opened inside the
Source Viewer. The debugger is still offline, i.e. a J-Link connection to the target has not
yet been established. At this point, only windows whose content does not depend on target
data are operational and already display content. To put the remaining windows into use
and to begin debugging the program, the debug session must be started.

2.2.2 Starting the Debug Session

The debug session is started by clicking on the green start button in the debug toolbar or by
hitting the shortcut F5. After the startup procedure is complete, users may start to debug
the program using the controls of the Debug Menu. The debugging workflow is described
in detail in Chapter 5.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

Chapter 3

Graphical User Interface

This chapter provides a description of Ozone’s graphical user interface and its usage. The
focus lies on a brief description of graphical elements. Chapter 5 will revisit the debugger
from a functional perspective.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

35 CHAPTER 3 User Actions

3.1 User Actions

A user action (or action for short) is a particular operation within Ozone that can be triggered
via the user interface or programmatically from a script function. Ozone provides a set of
around 200 user actions.

3.1.1 Action Tables

Section Action Tables on page 35 provides multiple tables that contain quick facts on all
user actions. The action tables are particularly well suited as a reference when running the
debugger from the command prompt or when writing script functions.

3.1.2 Executing User Actions

User actions can (potentially) be executed in any of the ways listed below.

Execution Method Description
Menu A user action can be executed by clicking on its menu item.
Toolbar A user action can be executed by clicking on its tool button.
Hotkey A user action can be executed by pressing its hotkey.

A user action can be executed by entering its command into

Command Prompt the Console Windows command prompt.

A user action can be executed by placing its command into a

Script Function script function.

However, some user actions do not have an associated text command and thus cannot
be executed from the command prompt or from a script function. On the other hand,
some actions can only be executed from these locations, but have no affiliated user inter-
face element. Furthermore, some actions do not provide a hotkey. Section User Actions
on page 35 provides information about which method of execution is available for the
different user actions.

3.1.2.1 User Action Hotkeys

A user action that belongs to a particular debug window may share the same hotkey with
another window-local user action. As a rule of thumb, a window-local user action can only
be triggered via its hotkey when the window containing the action is visible and has the
input focus. On the contrary, global user actions have unique hotkeys that can be triggered
without restriction.

3.1.3 Dialog Actions

Several user actions execute a dialog. The fact that a user action executes a dialog is
indicated by three dots that follow the action’s name within user interface menus.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

36

CHAPTER 3 Change Level Highlighting

3.2 Change Level Highlighting

Ozone emphasizes changed values with a set of three different colors that indicate the
recency of the change. The change level of a particular value is defined as the number of
times the program was stepped since the value has changed. The table below depicts the
default colors that are assigned to the different change levels.

Change Level

Meaning

Level 1 The value has changed one program step ago.
Level 2 The value has changed two program steps ago.
Level 3 The value has changed three program steps ago.

Level 4 (and above)

The value has changed 4 or more program steps ago or does
not display change levels.

Both foreground and background colors used for change level highlighting can be adjusted
via the User Preference Dialog (see User Preference Dialog on page 65 or via command
Edit.Color (see Edit.Color on page 215).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

37

3.3 Main Window

Ozone’s Main Window consists of the following elements, listed by their location within the
window from top to bottom:

CHAPTER 3

Main Window

e Menu Bar

e Tool Bar

e Content Area

e Status Bar

These components will be explained further down this chapter. First, the Main Window is

[ky_STM32F103_K ky.auf - SEGGER J-Link Debugger ¥1.71a (beta) =10l x|
Fle Edt view Debug Window Help

O P e~ra & &

Functions X GLCD_16bitTF_STM32.c X UL w |Registers X
Name [une [Fie | Address Rangea || 571w col: column mumber (& | Mame: [value [=]

_sys_exit 48 Retarget.c 200010B4-2 672 % £i: font index (0 = 6x8, L = l6x24) = am Curr, CPU Regs

_ttywrch a3 Retargst.c 20001048-2 :;: : N i ascii character RO 0x00000010

ADC_GetCrv as 2DC.c 20000F4C- s eturn: 1 000000009

ADC_Ink 28 ADCe 20000E40-2 76 R2 0x00000001

ADC_StartCv 77 ADC.c 20000F28-2 577 woid GLCD_DisplayChar {unsigned int In, unsigned int col, unsigned char £i, u R3 0x00000030

ADC_StopCrv 86 ADC.c 20000F34-2 678 R4 000000010

BusFault_Handeer 176 startup_stm32flie_hds 200001522 g;g i 1312:1_: 14 RS 0x00000004

switc] i

BUT_Int 37 inky.c 200010B8-2 o1 ST e G O o re 0%00000009

DebugMon_Handler 190 startup_stm32fi0x hd.s 20000158-2 e SLCD DravChar(sel ® 6, In ® 8, 6, 8, (unsigned char 7)sFont 6x8 h R 0%00000001

Defaclk_Handler 324 startup_stm32fi0x_hds 2000015E-2 683 break; R8 0x00000000 b

delay 7L GLCD_1ebitIF_STM32.C 20000344-2 664 case l: /% Font 16 x 24 */ R3 OxFFFFFFFF

DMAL_Channell_IRQHandler 108 ADC.c 20000F62-2 $::2 E"E];;D‘E‘“Ehﬂrfml ® 16, In * 24, 16, 24, (unsigmed char ")sFont 16x24 h R0 OxFFFFFFFF

Ferrar 37 Retarget.c 20001040-2 S reak RI1 0x0000000B

Friate a7 Ratarmat - 200N N9F-7-2 R1Z OXEDOCEDLS
o 3 558 }

689 R13 0%20008418

Functions /_Source Files J_Breakpoirts / P ETES Rzot00czT [
Gobal Data x| e =
— ~ [vais [rocstion [Tooe [=] :g; : Dl;ply string on s Line \ . Disassembly %

araueter: n: ine mumber GLCD_DrawCharicol * 16, In * 24, 16, 24, (]
AHBPrescTable 20008004 const uchar[16] 694 * col: colunn number <> 20000BE6 0044EED4 ADD RO, B4, R4,
clock_1s Ox0 2000802C uchar 695 * Fi: font index (0 = &x8, 1 = l6x24) 20000EEA 4960 LDR Rl, [PC, Ox
= Color 20008014 wolatile ushort[2] BO6 EH pointer to string 20000BEC LO00EBOL ADD RO, Rl, RO,
[0 O<FFFF 20008014 wolatile ushort 837 # Return: 2Z0000BFD 0245EB0S ADD B2, RS, RS,
[8] 0xFE00 20008016 wolatile ushort :gg [l 20000BF4 00DL L5L Rl, Rz, #3
20000BF6 9000 STR RO, [3P, Ox
o EIC 24 i 2000IE A [Const puEnoEEZG6E] 700 woid GLCD DisplayString (wnsigned int ln, wnsigned int col, unsigned char £i, 20000BF8 0130 LSL RO, R&, #4
Font_6x8_h 200014F4 const uchar[895] eoh R o v ma gz —

Fimax x0 20008016 uchar 0z while (73] { 20000BFC 2210 v Rz, #ls

ITM_RexBuffer OxSAASSAAS Z00DB030 wolatile int = 703 GLCD_DisplayChar(In, colth, £i, Ts+): 20000BFE FFSEFTFF BL 0x20000B1E
led_mask. 20003374 const ulong[4] Zg: i break;

SystemCoreclock 0x44AA200 20008000 uint ' 200000 ZImE R0 o =
e, Tl] el J L3) K1 |
WMemory1 @ 5880 [console x | Call Stack, x
00DDSSED B4 06 00 20 24 06 00 20 2C 06 00 20 2C 06 00 20 ﬂ Debug. $tepInto () ; =] | Function [Line [File |
ODOOS8CO 34 06 00 20 34 06 00 20 3C 06 00 20 3C 06 00 20 Debug. StepInto() = GLCD_DisplayChar 685 GLCD_16HitIF_STM32.C
0000SEDO0 44 06 00 20 44 05 00 20 4C 05 00 20 4C 05 00 20 Debug, StepInto() =

. : GLCD_DisplaySt 703 GLCD_166HIF_STMS2.
000OSGEO 54 06 00 20 54 06 00 20 5C 06 00 20 5C 06 00 20 Debug. StepInte (] ¢ == = <
O00O5EF0 64 06 00 20 64 06 00 20 6C 08 00 20 6C 06 00 20 Debug. StepIntol) - I |nain 145 Blinky.c
00005300 74 06 00 20 74 06 00 20 7C 06 00 20 7C 05 00 20 Nebne SrenTntafl - || @ 20001508
00005910 84 06 00 20 84 05 00 20 BC 05 00 20 8C 05 00 20 < | r
00005920 94 06 00 20 94 06 00 20 SC 05 0D 20 9C 05 00 20 &l
[CPU halted Ln691 Che2 | Connected

Main Window hosting debug information windows

In its center, the Main Window hosts the source code document viewer, or Source Viewer
for short. The Source Viewer is surrounded by three content areas to the left, right and on
the bottom. In these areas, users may arrange debug information windows as desired. The
layout process is described in section Window Layout on page 44. The only window that

cannot be undocked or repositioned is the Source Viewer itself.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

38 CHAPTER 3 Menu Bar

3.4 Menu Bar

Ozone’s Main Window provides a menu bar that categorizes all user actions into five func-
tional groups. It is possible to control the debugger from the menu bar alone. The five
menu groups are described below.

3.4.1 File Menu

The File Menu hosts actions that perform file sys-

. . . M +
tem and related operations (see File Actions on L
page 203)_ L] Dpen... ChrH
New el Save OS_StartLECElink.c CErl+5

Save Project as.., Ckrl+Shift+5

This submenu hosts actions to create a new project
and to run the Project Wizard (see Project Wizard B 53vesl

on page 31). Recent Projects *
Open Recent Programs 4
Opens a project-, program-, data- or source-file Export '
(see File.Open on page 208). _

B Exit Alt-+F4

Save Project as

Opens a dialog that lets users save the current
project to the file system.

Save All

Saves all modified workspace files.

Recent Projects

The “Recent Projects” submenu contains a list of recently used projects. When an entry is
selected, the associated project is opened.

Recent Programs

The “Recent Programs” submenu contains a list of recently opened program files. When
anentry is selected, the associated program file is opened.

Export

A submenu that currently hosts a single entry which opens the Disassembly Export Dialog
(see Disassembly Export Dialog on page 56).

Exit

Exits the application.

3.4.2 View Menu

The View Menu contains an entry for each debug information window. By clicking on an
entry, the corresponding window is added to the Main Window at the last used position
(see Opening and Closing Windows on page 51).

embOS

If an RTOS awareness plugin has been loaded using action Project.SetOSPlugin on
page 235, a submenu is added to the View Menu that hosts an additional entry for the
RTOS Window (see RTOS Window on page 117).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

39 CHAPTER 3 Menu Bar

Toolbars

This submenu hosts three checkable actions that define whether the file-, debug- and help-
toolbars are visible (see Toolbars on page 42).

Enter/Exit Full Screen

Enters or exit fullscreen mode.

3.4.3 Find Menu

The Find Menu hosts actions that locate program symbols _

Find. .. Ckrl+F
and text patterns.

Find In Files. .. Ckrl+AlE+F
Find... Find Source File. .. brlHE
Opens the Quick Find Widget (see Quick Find Widget on Find Functiar. .. -
page 70) in text search mode. Find Global Data,, Ctrl+
Find In Files...
Opens the Find In Files Dialog (see Find In Files Dialog on
page 57)

Find Function...

Opens the Quick Find Widget (see Quick Find Widget on page 70) in function search
mode.

Find Global Data...

Opens the Quick Find Widget (see Quick Find Widget on page 70) in global data search
mode.

Find Source Files...

Opens the Quick Find Widget (see Quick Find Widget on page 70) in source file search
mode.

3.4.4 Debug Menu

The Debug Menu hosts actions that control program exe- 0 buadi hif
cution (Debug Actions on page 202). 4 topDebugding ShiFt+FS
[Continue FS
Start/Stop Debugging = Reset F4 b
Starts the debug session, if it is not already started. Stops 3 o Fid
the debug session otherwise. a¥ Step over
¥ stepinto F11
Continue/Halt & Stepout Shift+F11

Resumes program execution, if the program is halted. Halts
program execution otherwise (see Resume on page 144).

Reset

Resets the program using the last employed reset mode. Other reset modes can be executed
from the action’s submenu (see Reset on page 143).

Step Over

Steps over the current source code line or machine instruction, depending on the active
code window (see Active Code Window on page 45 and Step on page 143).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

40

CHAPTER 3 Menu Bar

Step Into

Steps into the current subroutine or performs a single instruction step, depending on the
active code window (see Active Code Window on page 45 and Step on page 143).

Step Out

Steps out of the current subroutine (see Step on page 143).

3.45 Tools Menu

The Tools Menu hosts four dialog actions that allow users

to edit Ozone’s graphical and behavioral settings (see A Jlink Settings. . ekl
Tools Actions on page 205). ol Trace Settings. .. Chrl+AIE+T
_] I Preferences... CEr-+Al+P

J-Link Settings _
d System Wariables. .. Chrl+ Al

Opens the J-Link-Settings Dialog that allows users to
specify the hardware setup, i.e. the target device and debugging interface to be used (see
J-Link Settings Dialog on page 61).

Trace Settings

Opens the Trace Settings Dialog that is provided to configure Ozone’s trace data input
channel (see Trace Settings Dialog on page 63).

Preferences

Opens the User Preference Dialog that allows users to configure Ozone’s graphical user
interface (see User Preference Dialog on page 65).

System Variables

Opens the System Variable Editor that allows users to configure behavioral settings of the
debugger (see System Variable Editor on page 62).

3.4.6 Window Menu

The Window Menu lists all open windows and docu- Close Windaw oy
ments and provides actions to alter the window and =
document state. Close Al Windows Ale+Shifk+i
Indack,
Close WIndOW W ggnsgle
Closes the debug window that contains the input Terminal
focus. Close Docurment Chrl+-F4
Close All Windows Close All Documents Ckrl+Al+F4
. Clase All Unedited Docurments
Closes all debug windows.
v 1 TraceDemo,.c
Undock 2850
Undocks the debug window that contains the input
focus.
Window List

The list of open debug information windows. By selecting an item, the corresponding debug
window is focused.

Close Document

Closes the active source document.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

41 CHAPTER 3 Menu Bar

Close All Documents

Closes all source documents.

Close All Unedited Documents

Closes all unedited source documents.

Document List

The list of open source documents is appended to the window menu.

3.4.7 Help Menu

User help related actions.

[| User Manual... F1
User Guide 4 Commands shift+F1
Opens the user guide and reference manual. about Ozone. .

Command Help

Prints a description of all user actions to the Console Window

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

42 CHAPTER 3 Toolbars

3.5 Toolbars

Three of Ozone’s Main Menu groups — File, Debug and View — have affiliated toolbars
that can be docked to the Main Window or positioned freely on the desktop. In addition,
a breakpoint toolbar is provided.

Category Toolbar
File |FERIER=
Debug RN -
View &1 Bl El (s el (5 (] o] &1 (2] 7] [6] [1L] (] (7] [c] b2] [
Breakpoints |& @ &< e<

3.5.1 Showing and Hiding Toolbars

Toolbars can be added to the Main Window via the toolbar menu (View — Toolbars) or
by executing command Toolbar.Show using the toolbar’s name as parameter (e.g. Tool -
bar . Show(“ Debug”)). Removing toolbars from the Main Window works the same way using
action Toolbar.Close (see Toolbar.Close on page 221).

3.5.2 Arranging Toolbars

Toolbars can be arranged either next to each other or above each other within the toolbar
area as desired. To reposition a toolbar, pick the toolbars handle and drag it to the desired
position.

3.5.3 Docking and Undocking Toolbars

Toolbars can be undocked from the toolbar area and positioned anywhere on the desktop.
To undock a toolbar, pick the toolbar’s handle and drag it outside the toolbar area. To hide
an undocked toolbar, follow the instructions of section Showing and Hiding Toolbars on
page 42.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

43

CHAPTER 3 Status Bar

3.6 Status Bar

Ozone’s status bar displays information about the debugger’s current state. The status bar
is divided into three sections (from left to right):

e Status message and progress bar
e Window context information
e Connection state

(wyriting Memory... EEEERRRRRRNNNNNNNNNN Ln 33 Ch 1 | Connected @ 100 kHz
Status bar

3.6.1 Status Message

On the left side of the status bar, a status message is displayed. The status message informs
about the following objects, depending on the situation:

Program State

By default, the status message informs about the program state, e.g. "Program running”.

Operation Status

When the debugger performs a lengthy operation, the status message displays the name
of the operation. In addition, a progress bar is displayed that indicates the progress of the
operation.

Context Help

When hovering the mouse cursor over a user interface element, the status message displays
a short description of the element.

3.6.2 Window Context Information

The middle section of the status bar displays information about the active debug information
window.

3.6.3 Connection State

The right section of the status bar informs about the debugger’s J-Link connection state.
When the debugger is connected to the target, the data transmission speed is displayed
as well.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

44 CHAPTER 3 Debug Information Windows

3.7 Debug Information Windows

Ozone features a set of 23 debug information windows that cover different functional areas
of the debugger. This section describes the common features shared by all debug infor-
mation windows. An individual description of each debug information window is given in
chapter Debug Information Windows on page 44.

3.7.1 Context Menu

Each debug information window owns a context menu that
provides access to the window’s options. The context menu

|c| Wiew Saurce Shift+5
is opened by right-clicking on the window. i) View Disassembly Shift+D

3.7.2 Display Format

Several debug information windows allow users t0 ' gxoooooooa

change the value display format of a particular (or gyn: [T Binary
all) items displayed within the window. If supported, g, Display 8l 45 * v Hexadeim
the value display format can be changed via the win- . s v s
dow’s context menu or via commands Window.Set- 0x00000000 Decimal
DisplayFormat and Edit.DisplayFormat (see Window

Q00000000 Character

Actions on page 206).

3.7.3 Window Layout

Section Window Layout on page 44 describes how
debug information windows are added to, removed from and arranged on the Main Window.

[aETinininininintnly]

3.7.4 Change Level Highlighting

Multiple debug information windows highlight numeric values accord- yaue
ing to recency of their last change (see Change Level Highlighting on "5
page 44).

0x10
Ox20

3.7.5 Code Windows 020008041

Ozone includes two debug information windows that display the pro-
gram’s source code and assembly code, respectively. The code windows share several com-
mon properties that are described in Code Windows on page 44.

3.7.6 Table Windows

Several of Ozone’s debug information windows are based on a joint table layout that pro-
vides a common set of features. A shared description of the table-based debug information
windows is given in Table Windows on page 44.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

45 CHAPTER 3 Code Windows

3.8 Code Windows

Ozone includes two debug information windows that display program code: the Source
Viewer and the Disassembly Window. These windows display the program’s source code
and assembly code, respectively. Both windows share multiple properties which are de-
scribed below. For an individual description of each window, please refer to Source Viewer
on page 121 and Disassembly Window on page 90.

3.8.1 Program Execution Point

Ozone’s code windows automatically scroll to the position of the PC line when the user steps
or halts the program. In case of the Source Viewer, the document containing the PC line
is automatically opened if required.

3.8.1.1 Active Code Window

At any point in time, either the Source Viewer or the Disassembly Window is the active
code window. The active code window determines the debugger’s stepping behavior, i.e.
whether the program is stepped per source code line or per machine instruction.

3.8.1.2 Recognizing the Active Code Window

The active code window can be distinguished from the inactive code window by a higher
color saturation level of the PC line (see the illustration below).

;"’BIink',.:'.n: X\l\ w | Disaszembly »
S «|| 2000112E 4080F440 ORE RO, [«
5l Main Program 20001132 6005 TR RO, [
B2 F o oo e e | =zooollza 4770 BX LR

= 63 int main (void) | =»20001136 BS505 PUSH IR3,1
64 uint3Z_t ad_awg = 0; 20001138 2700 nov R7, #
65 uintls t ad wal = 0, ad val_ = O 20001134 2600 Hov RE,
BE int3zZ_t joy =0, joy_ = — 2000113C TSFFFo4dF Mo R&, ﬁll
il | sl 2]

Source Viewer (inactive, left) and Disassembly Window (active, right)

3.8.1.3 Switching the Active Code Window

A switch to the active code window occurs either manually or automatically.

Manual Switch

A manual switch of the active code window can be performed by clicking on one of the
code windows. The selected window will become active while the other code window will
become inactive.

Automatic Switch to the Disassembly Window

When the user steps or halts the program and the PC is not affiliated with a source code
line via the program’s address mapping table, the debugger will automatically switch to the
Disassembly Window. The user can hereupon continue stepping the program on a machine
instruction level.

Automatic Switch to the Source Viewer

When the program was reset and the PC is affiliated with a source code line, the debugger
will switch to the Source Viewer as its active code window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

46 CHAPTER 3 Code Windows

3.8.2 Breakpoint Bar

Each code window hosts a breakpoint bar on its left side. The breakpoint bar displays distinct
icons that provide additional information about code lines. Breakpoints can be toggled by
clicking on the breakpoint bar. If desired, the breakpoint bar can be hidden.

3.8.2.1 Showing an Hiding the Breakpoint Bar

The display of the breakpoint bar can be toggled from the User Preference Dialog (see User
Preference Dialog on page 65) or via command Edit.Preference (see Edit.Preference on
page 214).

3.8.2.2 Breakpoint Bar Icons

The following table summarizes the breakpoint bar icons and their meanings:

Icon Meaning

The code line does not contain executable code.

The code line contains executable code.

A breakpoint is set on the code line.

The code line contains the PC instruction and will be executed next.

The code line contains a call site of a function on the call stack.

The code line contains the PC instruction and a breakpoint is set on the line.

G ¢ L& e

The code line contains a call site and a breakpoint is set on the line.

The code line contains a tracepoint that starts trace.

w

The code line contains a tracepoint that stops trace.

3.8.3 Code Line Highlighting

Each code window applies distinct highlights to particular code lines. The table below ex-
plains the meaning of each highlight. Code line highlighting colors can be adjusted via the
User Preference Dialog (see User Preference Dialog on page 65) or via the command
Edit.Color (see Edit.Color on page 215).

Highlight Meaning

for (inti =0) { The code line contains the program execution point (PC).
Function(x,y); The code line contains the call site of a function on the call stack.
for (inti =0) { The code line is the selected line.

The code line contains the instruction that is currently selected
for (inti =0) { within the instruction trace window (see Backtrace Highlighting on
page 98).

3.8.4 Breakpoints

Ozone’s code windows provide multiple options to set, clear, enable, disable and edit break-
points. The different options are described below.

3.8.4.1 Toggling Breakpoints

Both code windows provide the following options to set or clear breakpoints on the selected
code line:

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

47 CHAPTER 3 Code Windows

Method Set Clear
Context Menu Menu Item “Set Breakpoint” Menu Item “Clear Breakpoint”
Hotkey Fo F9
Breakpoint Bar | Single-Click Single-Click

Breakpoints on arbitrary addresses and code lines can be toggled using the actions
Break.Set, Break.SetOnSrc, Break.Clear and Break.ClearOnSrc (see Breakpoint Actions on
page 201).

3.8.4.2 Enabling and Disabling Breakpoints

The code windows allow users to disable and enable the breakpoint on the selected code line
by pressing the hotkey Shift-F9. Breakpoints on arbitrary addresses and code lines can be
enabled and disabled using actions Break.Enable, Break.Disable, Break.EnableOnSrc and
Break.DisableOnSrc (see Breakpoint Actions on page 201).

3.8.4.3 Editing Advanced Breakpoint Properties

Advanced breakpoint properties, such as the trigger condition or implementation type,
can be edited via the Breakpoint Properties Dialog (see Breakpoint Properties Dialog on
page 52) or programmatically via commands Break.Edit (see Break.Edit on page 257)
and Break.SetType (see Break.SetType on page 255).

3.8.5 Code Profile Information

The code windows are able to display code profile information within a switchable sidebar
area on the left side of the window.

3.8.5.1 Hardware Requirements

The code profile features of Ozone require the employed hardware setup to support in-
struction tracing (see Hardware Requirements on page 47). The user experience can be
enhanced by employing a J-Trace PRO debug probe (see Streaming Trace on page 150).

3.8.5.2 Execution Counters

When code profiling features are supported 2637 96 [str ¥, [rZ], §4
by the hardware setup, the code windows a7
may display a counter next to each text line ek LoopFillZerobss:
that contains executable code. The counter 2638 53 [ldr r3, = _ebss
indicates how often the source code line or 2638 1000 ewp r2, r3
. . Z 638 ago00as08 42348 CMF
instruction was executed. S0E58 101 5 boc FillZerobes
z 63[:? og00030n L3F2 BCC

Resetting Execution Counters

The execution counters are reset automati-
cally at the same time the program is reset. A manual reset option is provided within the
code window context menu.

Toggling Execution Counters

The display of execution counters can be toggled from the code window context menu.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

48 CHAPTER 3 Code Windows

3.8.5.3 Execution Counter Highlighting

Execution Counters are highlighted in different colors. The default colors and their meanings
are explained below.

Color Description
10 000 Line has been executed.
10 000 Line has been partially executed.
10 000 Line has not been executed.

These default colors can be adjusted via the User Preference Dialog (see User Prefer-
ence Dialog on page 65) or programmatically via command Edit.Color (see Edit.Color
on page 215).

Executed Line

All instructions of the line have been executed and all conditions have been met and not met.

Partially Executed Line

Not all instructions of the line have been executed or conditions are only partially met.

Not Executed Line

No instruction of the line has been fetched from memory or executed.
3.8.5.4 Execution Profile Tooltips

When hovering the mouse cursor over an execution
counter, an execution profile tooltip is displayed.

Execution Profile for
SEGGER_RTT.c: E76

Fetched Fetched: 5409 641

. . . Executed: 5405641 (100.0%)
Number of times the instruction was fetched from Not-Executed: 0O (0.0%)

memory. Load: 1.3%

Executed

Number of times the instruction was executed. A
conditional instruction may not be executed after having been fetched from memory.

Not-Executed

Number of times the instruction was fetched from memory but not executed.

Load

Number of times the instruction was fetched divided by the total amount of instructions
fetched during program execution.

Please note that the execution profile of source code lines is identical to the execution profile
of the first machine instruction affiliated with the source code line.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

49 CHAPTER 3 Table Windows

3.9 Table Windows

Several of Ozone’s debug information windows are based on a joint table layout that pro-
vides a common set of features. The Breakpoint Window illustrated below is an example of
a table-based debug information window (or table window for short).

k|
Address S| Cn Caonkexk Lire I File: I
05000408 | int Count = 0; 53 Main.
DEO004LE LDE RS, [FC, #+0x1C]
E <inlineds: *pZ = ol 27 Main.c
050003586 _Inlinefwapisa, &h): 35 Main.c
0g0003DC _Inlinefwap (&b, &a): 39 Main.c

Table Window

3.9.1 Expandable Rows

A table row that displays a button on its left side can be expanded to B pCurrentTask
reveal its contained entries. A table window where multiple rows have

been expanded attains a tree structure as illustrated on the right. = én]pNext
[a]
3.9.2 Sortable Columns ptack

Table rows can be sorted according to the values displayed in a par-

ticular column. To sort a table according to a particular column, a left click on the column
header suffices. A sort indicator in the form of a small arrow indicates the column according
to which the table is currently sorted. The sort strategy depends on the data type of the
column.

3.9.3 Switchable Columns

Each table column has an entry in the context menu of the table header.
When an entry is checked or unchecked, the corresponding table column is
shown or hidden. The table header context menu can be opened by right- ¥ Yalue

clicking on the table header. v Location

v Type
3.9.4 Editable Columns

Certain table columns, such as the one displaying the values of variables,

are editable. When a value that is stored in target hardware is edited, a data read-back is
performed. This mechanism ensures that the displayed value is always synchronized with
the hardware state.

v Mame

3.9.5 Letter Key Navigation

By repeatedly pressing a letter key within a table window, the table rows that start with
the given letter are scrolled into view one after the other.

3.9.6 Filter Bar

Each table window provides a filter bar

that allows users to filter table con- ame Location |5IZE |WDE

tents. When a filter is set on a ta- |-B * 8"

ble column, only table rows whose col- _FiaseAddr zuoooszd 4 uint

umn value matches the filter stay vis- O5_JLIMKMEM_Buffe 0200 3AEZC 4 const uint

ible. The display state of the filter bar
(shown or hidden) can be toggled via the context menu of the table window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

50

CHAPTER 3 Table Windows

3.9.6.1 Value Range Filters

Columns that display numerical data accept value range filter input. A value range filter is
specified in any of the following formats:

Format Description
X-y keep items whose column value is contained within the range [x,y].
>X keep items whose column value is greater than x.
=X keep items whose column value is greater than or equal to x.
<X keep items whose column value is less than x.
<X keep items whose column value is less than or equal to x.

3.9.6.2 Filter Bar Context Menu

In addition to the standard text interaction options, the filter bar context menu provides
the following actions:

Clear All Filters

Clears all column filters.

Set Filter...

Opens the filter input dialog.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

51 CHAPTER 3 Window Layout

3.10 Window Layout

This section describes how debug information windows can be added to, removed from and
arranged on the Main Window.

3.10.1 Opening and Closing Windows

Opening Windows

Windows are opened by clicking on the affiliated view menu item (e.g. View — Breakpoints)
or by executing the command Window.Show using the window’s name as parameter (e.g.
W ndow. Show(“ Br eakpoi nts”)). When a window is opened, it is added to its last known
position on the user interface.

Closing Windows Programmatically

Windows can be closed programmatically via command Window.Close using the window'’s
name as parameter.

3.10.2 Undocking Windows

Windows can be undocked from the Main Window by dragging or double-clicking the win-
dow’s title bar. An undocked window can be freely positioned and resized on the desktop.

®_ C:/Examples/Blinky_STM32F - O] x|
File Edit Wiew Debug Help

| P~ & &

=]

Call Skack 20001122 4070F420 BIC R0, RO, #0x]<]

Function | Line | File 20001126 49D2 LDR Rl, [PC, Ox:

= main 63 Blnky. 20001128 6008 STR RO, [RL] J

GPIOD->CRL |- 0Ox00004000;

B 20001508 20001124 4608 Hov RO, Rl
2000112C 6800 LDR RO, [RO]
2000112E 4080F440 OFR RO, RO, #0x-
20001132 6008 STR RO, [RL]

}
[CPU halted 20001134 4770 BX LR
int main (void)] { d|
) i

Undocked disassembly window floating over the Main Window

3.10.3 Docking and Stacking Windows

Windows can be docked on the left, right or bottom side of the Main Window by dragging
and dropping the window at the desired position. If a window is dragged and dropped over
another window the windows are stacked. More than two windows can be stacked above

each other.
Funckion Line |File
= main 63 Blinky .
@ Z00015D5

I'lk Zall Skack, f‘L Instruction Trace '\ Disassembly |
| CPU halked | Ln1 Ch1 | Connected

Stacked debug information windows

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

52 CHAPTER 3 Dialogs

3.11 Dialogs

This section describes the different dialogs that are employed within Ozone.

3.11.1 Breakpoint Properties Dialog

The Breakpoint Properties Dialog allows users to edit advanced breakpoint properties such
as the trigger condition and the implementation type. The dialog can be accessed via the
context menu of the Source Viewer, Disassembly Window or Breakpoints/Tracepoints Win-
dow. Breakpoint properties can also be set programmatically using actions Break.Edit (see
Break.Edit on page 257) and Break.SetType (see Break.SetType on page 255).

State ¥ Breakpoint Properties x|
Enables or disables the breakpoint. —Breakpoint

Permitted Implementation Loesian: [ElEgpel il

Sets the breakpoint’s permitted implementa- —chabe —Permitted Impl.

tion type (see Break.SetType on page 255).

¥ Enabled I.ﬁ.ny ;I
Skip Count
Program execution can only halt each Skip- B
Count+1 amount of times the breakpoint is hit. IHp_T,qu -]
Furthermore, the remaining trigger conditions
must be met in order for program execution to
halt at the breakpoint.

—Condition

Reload | 05 _Global pTask 1= MULL |

When unchecked, the skip count condition is
deactivated as soon as the program halts at the
breakpoint for the first time.

% Trigger when krue € Trigger on change

- ¥ Extra Actions
Task

Specifies the RTOS task that must be running
in order for the breakpoint to be triggered. The
RTOS task that triggers the breakpoint can be Script Callback: |.3.,-,Ereak
specified either via its name or via its ID. When
the field is left empty, the breakpoint is task-
insensitive. oK Cancel

Popup Message: I

Console Message: I

Condition

An integer-type or boolean-type symbol ex-

pression that must be met in order for program execution to halt at the breakpoint. When
option “trigger when true” is selected, the expression must evaluate to a non-zero value in
order for the breakpoint to be triggered. When option “trigger when changed” is selected,
the breakpoint is triggered each time the expression value changed since the last time the
breakpoint was encountered.

Extra Actions

Specifies the additional actions that are performed when the breakpoint is hit. The provid-
ed options are a text message that is printed to the Console Window, a message that is
displayed within a popup dialog and a script function that is executed.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

53 CHAPTER 3 Dialogs

3.11.2 Code Profile Report Dialog

The Code Profile Report Dialog is provided to save the application’s code profile to a text
or a CSV file (see Code Profile Window on page 78).

B create Code Profile Repork x|

—Report Scope

7 Whole Application
™ Selected Modules

+ Selected Functions

-1 [5] BsRc -
(1 f ETH_IRQHandler
O f oTa_F5_IRGHandler
O f oTa_HS_IRGHandler
(] |5 Dlib_Product_string.h
] |3 Main_RTT_PrintfTest.c T
ri |

il P el P,

—oubput Format —CSY Farmak
" Report ™~ Functions

o sy

~ Instructions

—Oukput File

i f0zone_CTP_170621.csv |

(0] 4 Cancel |

Code Profile Export Dialog

Report Scope

Program scope to be covered by the output file.

Tree View

Allows users to define the report scope by selecting the files and functions to be covered
by the output file.

Output Format

Output file format. The default option “"Report” generates a human-readable text file. The
alternate option “CSV” generates a comma-separated values file that can be used with
table-processing software such as excel.

CSV Format

Available when output file format is "CSV”. Specifies which program entities within the se-
lected report scope are to be exported. For example, if the report scope contains a single
file and the selected CSV format is “Instructions”, then a code profile report about all in-
structions within the selected file is generated.

Export File Paths

Specifies if absolute file paths (checked) or file names (unchecked) are to be exported.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

54 CHAPTER 3 Dialogs

Output File
Output file path.

3.11.2.1 Code Profile Report

Shown below is the content of a text file generated by the Code Profile Report Dialog.

Ozone Code Profile Report

Project: C:/Exanplesy/Board 636 3THIZF407IG _ewb03 Fercepio
Adpplication: C:/Exanplesy/Board 636 3THIZF407IG _ewb03 Fercepio
Date: 23 Nov Z0la

Code Coverage SULNALY

Hodule/Function Source Lines Instructions

I
+

core_cmd.h I

MNVIC SetPriority |
SysTick_Config |
Main.c |
main |
+ _____________________

I

67 J/ 106 63.2%

Code Profile Zunmary

Hodule /Function | Funi Count | Load
___________________ +_______________+__________________________
core_cmd.h I I
NVIC SetPriority | 2 I 43
SysTick_Config | 1 I ZB
Main.c | I
main | 1 | 20
___________________ +_______________+__________________________
Total I 4 I 04

Code Profile Report Example

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

55

CHAPTER 3

3.11.3 Data Breakpoint Dialog

The Data Breakpoint Dialog allows users to place data breakpoints on global program vari-
ables and individual memory addresses. Please refer to Data Breakpoints on page 147 for

further information on data breakpoints in Ozone.

The dialog can be accessed from the con-
text menu of the Breakpoints/Tracepoints win-
dow (see Breakpoints/Tracepoints Window on
page 72) or from the context menu of the
data symbol windows.

Data Location

The data location pane allows users to speci-
fy the memory address(es) to be monitored for
IO accesses. When the “From Symbol” field is
checked, the memory address is adapted from
the data location of a global variable. Other-
wise, the memory addresses need to be speci-
fied manually.

Access Condition

The access condition pane allows users to spec-
ify the type and size of a memory access that
triggers the data breakpoint.

Value Condition

The value condition pane allows users to specify
the I0-value required to trigger the data break-
point. The value condition can be disabled by
checking the “Ignored” field.

OK Button

Dialogs

EI

—Data Location

" From Symbal

I Address: 0

I Mask, 0 |
—hccess Condition

I'u'-.-'rite iy |

Arcess Sizet

IByte j
—Walue Condition

[T Ignored

I Yalue: 100

| Mask: 0xFFFFFFFF =]

4 Zancel |

By pressing the OK button, a data breakpoint with the specified attributes is set in target
hardware and added to the Breakpoints/Tracepoints Window. In case the debugger is dis-
connected from the target, the data breakpoint is added to the Breakpoints/Tracepoints
Window and scheduled to be set in target hardware when the debug session is started.

Cancel Button

Closes the dialog without setting the data breakpoint.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

56

CHAPTER 3

Dialogs

3.11.4 Disassembly Export Dialog

The Disassembly Export Dialog is provided to save the disassembly of arbitrary memory
address ranges, including source code and symbol information, to CSV and assembly code

files.

= Export Disassembly Data

x|

—Farrmat

fe 5y

™~ Assembly Code

—Enkity
= wWhaole Program
f+ Particular Funckion

~ address Range

—Function

I __aeabi_memcpy

=l

—Oukput File

I C:/TempjDzone_Disassembly 151009, csy|

.

Ik Cancel |

Disassembly Export Dialog

CSv

Disassembly data is exported in CSV format.

Assembly Code

Disassembly data is exported to a single recompilable GNU-syntax assembly code file.

Entity/Function

Selects the address range to be exported.

3.11.4.1 Exemplary Output

Shown below is an excerpt of a CSV file that was generated using the Disassembly Export

Dialog.

Address | Encoding Length Type Opcode
a001340 |B430 2 THUMEB PLSH
a001342 |BO33 2 THUME SUE
8001344 AFOO 2 THUME ADD
001346 4B 2 THUME LDR
a001348 BO7E 2 THUME STR
0300134~ BS7E 2 THUME LDR
0300134c 2202 2 THURME WO
0300134E B11A 2 THUME |STR
a001350 BEYE 2 THUME LDR
a001as2 2202 2 THURME MO

Operands Label Source
[R7} ~[Dalnit |static void
SF, SP,#12

R7, 5P, #

F3, [0x030013CE] Bt p=& SEC
F3, [R7, #+H0x04]

R3, [R7, #Hx04] p-=MaxMur
R2, #

R2, [R3, #H1x10]

R3, [RY, #H1x04) p-=hdaxhur
R2, #

CSV content generated by the Disassembly Export Dialog

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

57 CHAPTER 3 Dialogs

3.11.5 Find In Files Dialog

The Find In Files Dialog allows users to search for text patterns within multiple source code
documents.

Find What A x|

Defines the search pattern. The search pattern / Find
is either a plain text or a regular expression,

depending on the type of the search (see Use maha

Regular Expressions below). | i |
Look in:

LookIn ICurrent Project j

Specifies the search scope. The search scope
defines the source code documents that are to
be included in the search (see File Search Scope

[—] Find Options

[~ Match Case

on page 58).

[~ match Whale Word
Match Case V' Use Reqular Expressions
Specifies if the letter casing of the search pat- =] Result Options

tern is relevant.

[~ show Filepaths
Match Whole Word

Specifies if a match must start and end at word
boundaries.

. Close
Use Regular Expressions ‘—I

Indicates if the search pattern is interpreted

as a regular expression (checked) or as plain text (unchecked). In the first case, the search
is conducted on the basis of a regular expression pattern match. In the latter case, the
search is conducted on the basis of a substring match.

Find Presw Find Mexk Find Al |

Show File Paths

Indicates if the file path of matches should be included in the search result. The search
result is displayed within the Find Results Window (see Find Results Window on page 93).

Find All

Finds all occurrences of the search pattern in the selected search scope. The search result
is printed to the Find Results Window.

Find Next

Finds the next occurrence of the search pattern in the selected search scope. When a match
is found, it is highlighted within the Source Viewer. After closing the Find In Files Dialog,
the next occurrence of the search pattern can be located using shortcut F3.

Find Previous

Finds the previous occurrence of the search pattern in the selected search location. When
a match is found, it is highlighted within the Source Viewer. After closing the Find In Files
Dialog, the next occurrence of the search pattern can be located using the shortcut Shift
+F3.

Close

Closes the dialog.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

58

CHAPTER 3 Dialogs

3.11.5.1 File Search Scope

Text search can be conducted in one of three file scopes. The desired search scope can be
specified via the “Look In” selection box of the Find In Files Dialog.

Search Scope

Description

Current Document

The search is conducted within the active document.

All Open Documents

The search is conducted within all documents that are open
within the Source Viewer.

Current Project

The search is conducted within all source files used to com-
pile the debuggee.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

59 CHAPTER 3 Dialogs

3.11.6 Generic Memory Dialog

The Generic Memory Dialog is a multi-functional dialog that is used to:

e Dump target memory data to a binary file
e Download data from a binary file to target memory
e Fill a target memory area with a specific value

All values entered into the Generic Memory Dialog are interpreted as hexadecimal humbers,
even when not prefixed with “0x”".

3.11.6.1 Save Memory Data

In its first application, the Generic Memory Dialog is used to save target memory data to
a binary file.

File ~ Save Memory Data |

The destination binary file (*.bin) into which mem- , .
ory data should be stored. By clicking on the dotted | File | Cittempiiata.bin ...
button, a file dialog is displayed that lets users se- I.ﬁ.ddress: |2|:n:u:u:u:n:u:|

lect the destination file.

| End Address: | 2000010F

Address
ISize: | 1ed
The addresses of the first byte stored to the desti-
nation file. Size The number of bytes stored to the S ancel

destination file.

3.11.6.2 Load Memory Data

In its second application, the Generic Memory Dia-
log is used to write data from a binary file to target memory.

File

The binary file (*.bin) whose contents are to be written to target memory. By clicking on
the dotted button, a file dialog is displayed that lets users choose the data file.

Address

The download address, i.e. the memory address that should store the first byte of the data
content.

End Address / Size

The number of bytes that should be written to target memory starting at the download
address.

3.11.6.3 Fill Memory

In its third application, the Generic Memory Dialog m x|
is used to fill a memory area with a specific value.
Fill Value [Filvalue: o
The fill value. | Address: | 20000000
Address | End Address: | 2000010F
The start and end addresses (inclusive) of the mem- | sce: | 1e0
ory area.
Fill Zancel

End Address / Size

The size of the memory area.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

60 CHAPTER 3 Dialogs

3.11.7 Instruction Trace Export Dialog

The Instruction Trace Export Dialog is provided to save the current instruction trace record
to a CSV file.

= Export Instruction Trace Data ll

—Inskruction Counk

6,91k
e 4M, Z.2G,...

—Cukput File

t::,l'Users,l'Ju:unas,l'Oz-:une_Instructinn_Trace_lEIIJIIIB.csv ™ |

I Cancel |

Instruction Trace Export Dialog
Instruction Count
Maximum amount of instructions to export.
Output File
Output file.

3.11.7.1 Exemplary Output

Shown below is an excerpt of a CSV file that was generated using the Instruction Trace
Export Dialog.

Address |[Encoding |Length Type Opcode Operands Label Source

001340 B4a0 THUMB PUSH R} _Dalnit | static void
go01342 BO&3 THUME SUB =F, 5P, #12

8001344 AFO0 THUME ADD Y, =P, #

001346 4B21 THUME LDR R3, [0x030013CE] 4t p=& SEC
001348 BOYE THUMEB | =TR F3, [R7, #+H1x04]

03001344 BEYE THUME LDR R3, [R7, #+Hx04] p-=hdaxMur

0s00134C 2202
0300134E B11A

THUMB MO F2, &

THUME | =TH F2, [R3, #H1x10]

8001350 BEYBE THUME LDR H3, [R7, #+H1x04) p-=MaxMur
go01352 2202 THUMB MO R2, #

CSV content generated by the Instruction Trace Export Dialog

RS R N R SN LN B R LN N R N R S

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

61 CHAPTER 3 Dialogs

3.11.8 J-Link Settings Dialog

The J-Link-Settings-Dialog allows users to configure J-Link related settings, such as the
target model and the debugging interface. Please refer to Project Wizard on page 31 for
further details on these settings.

J-Link Settings x|

-Link.

Maodel; I-Trace PRO W1 Corkex-M
Serial-Mo: 751000028
APT Version: 6.22e

Targek Device

| sTM3zF4071G [

Target Interface

| 5w 4 MHz [

Hosk Interface

= -
Close |

J-Link Settings Dialog

3.11.8.1 Opening the J-Link Settings Dialog

The J-Link Settings Dialog can be opened from the Main Menu (Edit — J-Link Settings) or
by executing command Tools.JLinkSettings (see Tools.JLinkSettings on page 213).

3.11.8.2 Applying Changes

Save

By clicking the save button, the selected J-Link settings are written as Ozone API commands
to the project file and thereby applied persistently.

Close

By clicking the close button, the selected J-Link settings are applied to the current session
only.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

62 CHAPTER 3 Dialogs

3.11.9 System Variable Editor

Ozone defines a set of system variables that control behavioral aspects of the debugger.
The System Variable Editor lets users observe and edit these variables in a tabular fashion.

System Yariables x|

Mane / Yalue Descripkion
WAR_ACCESS WIDTH Auta Access * | Defaulk memary access width
WAR_ALLOW _BMA_EMULATION no ~ | allow background memory access emulation
WaR_BREAK_AT_THIS_SyMBOL main Break, at this symbol on debug session skart
WAR_BREAKPOIMT_TYPE Ay * | Permitted breakpaint implementation bype
YAR_MEM_Z0ME_RIMMING Default Default memory zone accessed when the program is running
WOR_TARGET _POWWER_CN WES * | J-Link supplies power to the target
YAR_WERIFY_DiOWNLOAD ves * | Merify download of program images

Save Close

System Variable Editor

3.11.9.1 Opening the System Variable Editor

The System Variable Editor can be opened from the Main Menu (Edit — System Variables)
or by executing command Tools.SysVars (see Tools.SysVars on page 214).

3.11.9.2 Editing System Variables Programmatically

The command Edit.SysVar on page 215 is provided to manipulate system variables inside
script functions or at the command prompt (see Command Prompt on page 82).

3.11.9.3 Applying Changes

Save

By clicking the save button, the displayed system settings are written as Ozone API com-
mands to the project file and thereby applied persistently.

Close

By clicking the close button, the selected system settings are applied to the current session
only.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

63 CHAPTER 3 Dialogs

3.11.10 Trace Settings Dialog

The Trace Settings Dialog allows the user to configure the available trace data channels.

€, Trace Settings P3| Il “\ Trace Settings x|

Trace Source Trace Source
[swo =]
Instrumentation Instrumentation
v Timeskamps v Timeskamps
CPU Frequency ZPU Frequency
| 100 MHz W Aot |15 950 100 =] He

e.q: 200MHz, 0.2GHz,...

SWO Frequency
Trace Paort Width

|4 bit |

Maxirmum Instrackion Count

I Auto | aooo0g) ~| Hz

[10m
e.q: 4M, Z2.2G,...

Trace Timing

I Defaulk _I

Trace File

| orf [
|

Save Close Save Close

Trace Settings Dialog

Trace Source

Selects the trace data channel to be used:

Trace Source Description

Instruction Trace (ETM) data is read realtime-continuously from the
target’s trace pins and supplied to Ozone’s Trace Windows. This option
requires a J-Trace debug probe to be employed (see Streaming Trace
on page 150).

Trace Pins

Instruction Trace (ETM) data is read from the target’s trace data

Trace Buffer buffer and supplied to Ozone’s Trace Windows.

“Printf-type” textual application (ITM) data is read via the SWO chan-

SWO nel and supplied to Ozone’s Terminal Window on page 126.

For detailed information on ETM and ITM trace and how to set up your hardware and soft-
ware accordingly, please consult the J-Link User Guide .

Note

The simultaneous use of multiple trace data channels in Ozone is currently not sup-
ported.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-sdk.html

64 CHAPTER 3 Dialogs

Timestamps

Specifies if the target is to output cycle counters (instruction execution timestamps) mul-
tiplexed with the pin trace. The cycle counters are employed by various debug windows to
present users with information about the CPU time spend inside individual program entities.

CPU Frequency

Specifies the constant conversion factor to use when converting cycle counters to time
values and vice versa.

Trace Port Width

Specifies the number of trace pins comprising the target’s trace port (see Project.SetTra-
cePortWidth on page 238).

Maximum Instruction Count

The maximum number of instructions that are read from the selected trace source before
readout is stopped.

Trace Timing

Specifies the software delays to be applied to the individual trace port data lines. This essen-
tially performs a software phase correction of the trace port’s data signals (see Project.Set-
TraceTiming on page 238).

SWO Clock

Specifies the signal frequency of the SWO trace interface in Hz. (see Project.ConfigSWO
on page 239).

CPU Clock
Specifies the core frequency of the target in Hz. (see Project.ConfigSWO on page 239).

3.11.10.1 Opening the Trace Settings Dialog

The Trace Settings Dialog can be opened from the Main Menu (Edit — Trace Settings) or by
executing command Tools.TraceSettings (see Tools. TraceSettings on page 213).

3.11.10.2 Applying Changes

Save

By clicking the save button, the selected trace settings are written as Ozone API commands
to the project file and thereby applied persistently.

Close

By clicking the close button, the selected trace settings are applied to the current session
only.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

65 CHAPTER 3 Dialogs

3.11.11 User Preference Dialog

The User Preference Dialog provides multiple options that allow users to customize the
graphical user interface of Ozone. In particular, fonts, colors and switchable items such as
line numbers and sidebars can be customized.

x|

= w0 General
Application

General -= Source Yiewer

)|
[

Callskack Window e ——_—_—————

%) Callgraph Window Shioww breakpoint bar ll
- = Console Window Showe expansion indicators wES * I
=0y Daka Graph Window Show execution counters i + I
| D | Disassermbly Window

—) Y_ Show instruction encodings no * I
- Fx Funckions Window
- |=1 Instruction Trace Window Lock header bar ¥es ll
| & | Power @raph Window Indent inline assembly code wES * I
L& Source Viewer Document editing restriction no reskrickion - I
Table Windows

—)) Line number frequency all Lines * I
- 22 | Terminal YWindow :
| =] Timeline Window Tab spacing Z ll

- Appearance

- || Application
- | D | Disassembly Window

LC | Source Yiewer

|| Table Windows

Close

User preference dialog

3.11.11.1 Opening the User Preference Dialog
The User Preference Dialog can be opened from the Main Menu (Edit — Preferences) or by
executing command Tools.Preferences (see Tools.Preferences on page 214).

3.11.11.2 Dialog Components

Page Navigator

The Page Navigator on the left side of the User Preference Dialog displays the available
settings pages grouped into two categories: general and appearance. Each settings page
applies to a single or multiple debug information windows, as indicated by the page name.

Settings Pane

The Settings Pane on the right side of the User Preference Dialog displays the settings
associated with the selected page.

3.11.11.3 General Application Settings

This settings page lets users adjust general application settings.

Setting Description

When set, the most recent project is opened when
the debugger is started. When unset, a welcome
screen is displayed when the debugger is started.

Open the most recent project on
startup

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

66 CHAPTER 3 Dialogs

Setting Description
Show a popup dialog when When set, a popup dialog is displayed when the
project settings are erroneous project file contains errors or inconsistent settings.

When set, a moving progress bar is animated with-
Show progress bar while running | in Ozone’s status bar area while the program is ex-
ecuting.

Show dialog option “Do not show | When set, popup-dialogs contain a checkbox that
again” allows users to stop the dialog from popping up.

When set, the users choice for all dialog options “Do
not show again” is reset when the preference dialog
is closed.

Reset all dialog options “do not
show again”

Show tooltips Toggles the display of mouse-over tooltips.

Toggles the display of table window icons illustrat-

Show symbol icons ing the row type.

Separator character used to delimit blocks within

Block Separator the display texts of large integer numbers.

3.11.11.4 Call Stack Window Settings

Setting Description

Selects if the current frame is displayed on top or at

Callstack layout the bottom of the call stack.

Maximum number of frames that are displayed
within the Call Stack Window.

When set, the display text of a call frame is aug-
mented with the names/values/types of the para-
meters of the affiliated function.

Callstack depth limit

Show parameter names/val-
ues/types

3.11.11.5 Call Graph Window Settings

Setting Description

When set, the call graph window contains an (ex-
pandable) entry for each root function of the pro-
gram. When unset, the top level contains an entry
for each program function.

Group by root functions

3.11.11.6 Console Window Settings

Setting Description

When set, all messages logged to the Console Win-

Show timestamps dow are prefixed with a timestamp.

3.11.11.7 Data Graph Window Settings

Setting Description
Data limit, in KB, of the data graph window. When
Data limit the data limit is surpassed, the oldest data is over-
written.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

67

CHAPTER 3 Dialogs

3.11.11.8 Disassembly Window Settings

Setting

Description

Show source

When set, the assembly code is augmented with
source code text to improve readability (see Mixed
Mode on page 92).

Show labels

When set, the assembly code is augmented with
labels to improve readability (see Mixed Mode on
page 92).

Show breakpoint bar

Toggles the breakpoint bar (see Breakpoint Bar on
page 46).

Show execution counters

Toggles instruction execution counters (see Execu-
tion Counters on page 47).

Show instruction encodings

Toggles instruction encodings.

3.11.11.9 Functions Window Settings

Setting

Description

Prefix class names to C++ mem-

ber functions

When set, C++ member functions are prefixed with
the class name.

3.11.11.10 Instruction Trace Window Settings

Setting

Description

Show instruction encodings

Toggles instruction encodings.

Timestamps/Timescale

Selects the unit of the timescale (see Timescale}.

3.11.11.11 Power Graph Window Settings

Setting

Description

Maximum sample count

Maximum number of samples than can be
processed and displayed by the Power Graph Win-
dow.

3.11.11.12 Source Viewer Settings

Setting

Description

Show breakpoint bar

Toggles the breakpoint bar (see Breakpoint Bar on
page 46).

Show expansion indicators

Toggles expansion indicators.

Show execution counters

Toggles execution counters (see Execution Counters
on page 47).

Show instruction encodings

Toggles instruction encodings within inline assembly
code text lines.

Lock header bar

When set, the header bar is visible at all times.
When unset, the header bar is only visible when
hovered with the mouse.

Indent inline assembly code

When set, inline assembly code text lines are in-
dented in relation to the affiliated source statement.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

68

CHAPTER 3 Dialogs

Setting

Description

Document editing restriction

Selects when editing of source code documents is
disabled.

Line number frequency

Selects the frequency of source code text lines that
display line numbers.

Tab Spacing

Number of white spaces drawn for each tabulator in
the source text.

3.11.11.13 Table Window Settings

Setting

Description

Show text value for..

By setting a data type’s option to yes, all symbols
of this data type display their value in the format
“<number> (<text representation>)" instead of
just “<number>".

Globally hide filter bars

When set, the display of table filter bars is globally
disabled (see Filter Bar on page 49).

Symbol member count display
limit

Maximum amount of members that are displayed
for complex-type symbols such as arrays.

Resize column when item is ex-
panded

Adjust the column size when a table item is ex-
panded.

Resize column when item is col-
lapsed

Adjust the column size when a table item is col-
lapsed.

3.11.11.14 Terminal Window Settings

Setting

Description

Suppress control characters

When set, non-printable and control characters are
filtered from IO data prior to terminal output (see
User Preference Identifiers on page 189).

Clear on reset

When set, the window’s text area is cleared follow-
ing each program reset.

Data limit

Date limit, in KB, of the Terminal Window.

Zero-terminate input

When set, a string termination character (\0) is ap-
pended to terminal input before the input is sent to
the debuggee.

Echo input

When set, each terminal input is appended to the
terminal window’s text area.

Newline input termination format

Selects the type of line break to be appended to
terminal input before the input is send to the de-
buggee (see Newline Formats on page 186).

3.11.11.15 Timeline Window Settings

Setting

Description

Timestamps/Timescale

Selects the unit of the timescale (see Timescale}.

Tooltips

Selects the types of window items that display
mouse-over tooltips.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

69 CHAPTER 3 Dialogs

3.11.11.16 Appearance Settings

On the appearance settings pages,
fonts and colors of a particular win- Appearance -> Application
dow or window group can be adjust-
ed. Within the window group “Appli-

c_ation", the d_efault appearance set- Fants
Eg(_;sspeflgi;izlclllwmdows and dialogs can IMS T
Fonts Calars
Lets users adjust individual fonts of the Cansale Text (Errar) j -

window or window group.

Colors
Lets users adjust individual colors of
the window or window group.
3.11.11.17 Specifying User Preferences Programmatically

Each setting provided by the User Preference Dialog is affiliated with an user action. User
preference actions allow users to change the preference from a script function or at the
command prompt. The table below gives an overview of the available user preference ac-

tions.
User Preference Category Affiliated User Action(s)
General Settings Edit.Preference (see Edit.Preference on page 214)

Edit.Color (see Edit.Color on page 215) and Ed-

Appearance Settings it.Font (see Edit.Font on page 216)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

70

3.11.12 Quick Find Widget

CHAPTER 3

Dialogs

The Quick Find Widget is a pop-up screen that facilitates locating program symbols and

text patterns.

Find Text 1| 41 45 ‘&

_Tog

Matches
* TogygleLED

static woid ToggleLED (int n) |
BEP_TogyleLED (n);
_ToggleLED i (Cnt f 10) % 3);

< |

Current Makch
* Toggles and LED
*f

static void [BgleLED (int n) |
BEP_ToguleLED(n);
}

4
N |

tore

2| [aa B (M am [E[E
3

-

Zaf 4

i

-

I 1 of 53

[2C1 _ER_IRCHandler
I2C1_EV_IRCQHandler
I2C2_ER_IRQHandler
12C2_Ev_IRQHandler
I2C3_FR_IRQHandler
I2C3_Ev_IRQHandler
TIM1_BRE_TIMS_IRGHandler
TIM1 _CC_IRQHandler
TIM1_TRG_COM_TIM11 IROHandler
TIM1_UP_TIM10_IRGHandler
TIMZz_IRQHandler
TIM3_IR:QHandler
TIM4_IROHandler
TIMS_IRQHandler
TIME_DAC_IROHandler

TIM7 _IR:OHandler
TIME_BRE_TIM1Z IRCHandler

h'r'rlulﬁ Pl 1 o VN [I | P

Find Funckion “1) YH da Yc

Quick Find Widget in text mode (left) and symbol mode (right).

How to use the quick find widget

As letters are typed into the input box, the list of match suggestions updates and shrinks.
The user selects the desired match via the arrow keys and upon pressing return, the se-
lected match will be shown and highlighted within its containing debug window.

3.11.12.1 Search Modes

The search mode of the Quick Find Widget can be selected using keyboard shortcuts or

the toolbar (1).

Mode Hotkey Initial Match List Content
Find Text Ctrl+F All text lines of the active document.
Find Function Ctrl+M All functions.
Find Global Data Ctri+] All global variables.
Find Source File Ctrl+K All source code files.

3.11.12.2 Text Search Options

When in text search mode, additional search options are provided (2):

Search Option

Description

Match case

The search is case sensitive.

Match whole word

Matching text must begin and end at word boundaries.

Use regular expression

The input text is interpreted as a regular expression rather
than a substring.

Include inline assembly
code

The search includes the active document’s inline assembly
code lines.

Furthermore, text search mode provides two buttons (3) to toggle the “"Matches” and “Cur-

rent Match” panes.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

Chapter 4

Debug Information Windows

This chapter provides individual descriptions of Ozone’s 22 debug information windows,
starting with the Breakpoint Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

72

CHAPTER 4 Breakpoints/Tracepoints Window

4.1 Breakpoints/Tracepoints Window

Ozone’s Breakpoints/Tracepoints Window lists all breakpoints, data breakpoints and trace-
points that have been set by the user during the current debug session.

4
i | Twpe I Location | Extras

= & Code Tracelemo.c: 133 Permitked Impl.=3oftware, Actual Impl.=Flash, TaskMame=HFP_T4S
& Code 0200 0708 Permitked Impl.=3oftware, Actual Impl.=Flash, TaskMame=HP_Ta3
& Code 0200 0754 Permitked Impl.=5oftware, Actual Impl.=Flash, TaskMame=HP_TAS
& Data _aLEDInio AccessType=ReadWrite, AccessSize=Byte, Match¥alue=0x10, Yal

F Trace Skark TraceDemo.c: 194

@ Trace Stop | TraceDemo.c: 196
1 | 2

For reasons of simplicity, the terms breakpoint and tracepoint are used interchangeably

in this section.

4.1.1 Breakpoint Properties

The Breakpoint Window displays the following information about breakpoints:

Column Description
State Indicates if the breakpoint is enabled or disabled.
Type One of CODE, DATA, TRACE_START and TRACE_STOP.
Location Source line or instruction address location.
Lists all advanced breakpoint properties that are set to non-default
Extras values. Advanced breakpoint properties are summarized in Advanced

Breakpoint Properties on page 145 and Data Breakpoint Attributes
on page 147. Tracepoints do not carry advanced properties.

4.1.2 Derived Breakpoints

Source breakpoints can be expanded in order to reveal their derived instruction breakpoints
(see Derived Breakpoints on page 72).

4.1.3 Breakpoint Dialog

The breakpoint dialog allows users to place break- . : .
points on: + 5et/Clear Breakpoinkt El
e Memory addresses of machine instructions rLacation:

e Source code lines
e Functions and other code symbols such as
assembly code labels Address; .0, 0xA0000000

Source Line Input Symbol Mame: 2,0, main

Source code lines are specified in a predefined format
(see Source Code Location Descriptor on page 182).

Opening the Breakpoint Dialog

E

Source Location: e.g. main.cpp:20

Sek Cancel

The Breakpoint Dialog can be accessed via the con-
text menu of the Breakpoint Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

73 CHAPTER 4 Breakpoints/Tracepoints Window

4.1.4 Editing Breakpoints Programmatically

Ozone provides multiple user actions that allow users to edit breakpoints inside script func-
tions or at the command prompt (see Breakpoint Actions on page 201 and Trace Actions
on page 206).

4.1.5 Context Menu

The Breakpoint Window’s context menu hosts the following actions (see Breakpoint Actions
on page 201):

Clear Clear Fa
Clears the selected breakpoint. Disable Shift+F9
i & Edi... Fa
Enable / Disable
Enables or disables the selected breakpoint. Lc] View Souree Cri+l
|| Wiew Disassembly Chrl+D
Edit
@ Set Breakpoint. .. Chrl+-&lE+E
Edits advanced properties of the selected Breakpoint . .
such as its trigger condition (see Breakpoint Proper- “% Set DataBreakpoint. . CiriHAl+D
ties Dialog on page 52). & St Tracepaint. . iZtrl+Alk+E
< Clear al
Show Source
. . . . Filter Bar
Displays the source code line associated with the se-

lected breakpoint. This action can also be triggered by double-clicking a table row.

Show Disassembly

Displays the assembly code line associated with the selected breakpoint.

Set Breakpoint...
Opens the Breakpoint Dialog (see Breakpoint Dialog on page 72).

Set Data Breakpoint...
Opens the Data Breakpoint Dialog (see Data Breakpoint Dialog on page 55).

Set Tracepoint...
Opens the Tracepoint Dialog.

Clear All

Clears all breakpoints.

4.1.6 Offline Breakpoint Modification

Breakpoints can be modified even when the target connection was not yet established.

4.1.7 Table Window

The Breakpoint Window shares multiple features with other table-based debug information
windows (see Table Windows on page 49).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

74

CHAPTER 4 Call Graph Window

4.2 Call Graph Window

Ozone’s Call Graph Window informs about the application’s function call paths and stack
usage.

A
Mame I IStau:k Total IStan:kLu:u:aI IDepth |Called Fram ICaII Site PC ;I
—| Reset_Handler 4E5+ 12 + &
+ SyskernInik z4 2 1 starkup_stm32f4x 0200091G
+ __libc_init_array 1+ 1le 1 + FP startup_stm32f4wx 02000914
= main 46+ Z4 1z + B startup_stmi32f4xx 0200091E
+ OS5 _Error 15+ 1& 1 Main,ci 34 02000448
05 _DisableInt H/h N/A 0 Main. c: 34 020004448
+ O5_Initkern_NFP 1&+ NS 2 4+ FP Main.c:35 020004EC
+ 05 _InitHW T2+ 40 z Main,ci36 ggooo4cao
-] Trace_Init 4324 Z4 11 + B Main.ci37 02000404
¥ SEGGER_RTT_CanfigUpBuffer | 42 a3z 1 krckernelPart,c:234 02001ASE
¥ SEGGER_RTT_CanfigDownBuffe 42 a3z 1 krckernelPart,c:240 0O2001AEE
O5_PTracelnik N/a N/a u] krckernelPart,c:245 02001474
-] wTraceStorelUserEventChannelh, 402+ 1e 10 + B trcKernelPort.c:247 02001474
vTraceSaveSymboal 3r a3z o trcRecorderci 276 0S001ADE
=] wTraceStoreSkringEvent 3924 40 2 + I trcRecordenc:27 0S001AE4
- prvTraceStoreStringEvent 352+ 125 2 + I trcRecordenc:820 02002316 -
. | o]

4.2.1 Overview

Each table row of the Call Graph Window provides information about a single function call.
The top-level rows of the call graph are populated with the program’s entry point functions.
Individual functions can be expanded in order to reveal their callees.

4.2.2 Table Columns

Name

Name of the function.

Stack Total

The maximum amount of stack space used by any call path that originates at the function,
including the function’s local stack usage.

Stack Local

The amount of stack space used exclusively by the function.

Depth

The maximum length of any non-recursive call path that originates at the function.

Called From

Source code location of the function call.

Call Site PC

Instruction memory location of the function call.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

75 CHAPTER 4 Call Graph Window

4.2.3 Table Window

The Call Graph Window shares multiple features with other table-based debug information
windows provided by Ozone (see Table Windows on page 49).

4.2.4 Uncertain Values

A plus (+) sign that follows a table value indicates that the value is not exact but rather a
lower bound estimate of the true value. A trailing “"R” or “FP” further indicates the reason
for the uncertainty. R stands for recursion and FP stands for function pointer call.

4.2.5 Recursive Call Paths

In order to obtain meaningful values for recursive call paths, the Call Graph Window only
evaluates these paths up to the point of recursion. This means that the total stack usage
and depth values obtained for recursive call paths are only lower bound estimates of the
true values (see Uncertain Values on page 75).

4.2.6 Function Pointer Calls

The Call Graph Window is able to detect function calls via function pointers. Currently, these
calls are restricted to be leaf nodes of the call graph. A function pointer call is indicated
by the display name “<fp-call>".

4.2.7 Context Menu
Show Call Site

Displays the call location of the selected function within the Source Viewer (see Source
Viewer on page 121). This action can also be triggered by double-clicking a table row.

Show Implementation c| View Call Site ChrlL
Displays the implementation of the selected func- ¢ Yiew Implementation Chrl+I
tion within the Source Viewer (see Source Viewer _
on page 121). Showe path with max stack usage Chrl4-P
. v Group By Root Functi Chrl4+-R

Show path with max stack usage FEHIR B SAEE PHREHANS '

v Group Callees Ckrl+G
Expands all table rows on the call path with the ¥ Filter Bar
highest stack usage. —

Z) Collapse &ll Alk+-

Group By Root Functions

Indicates if the top-level shows root functions on-
ly, i.e. functions that are not called by any other functions. If unchecked, the top level
shows all program functions.

Group Callees

Displays all calls made to the same function as a single table row.

Expand All / Collapse All

Expands or collapses all top-level entry point functions.

4.2.8 Accelerated Initialization

The Call Graph Window employs an optimized initialization routine when the ELF program
file provides address relocation information. Please consult your compiler’s user manual for
information on how to include address relocation information in the output file (GCC uses
the compile switch -q).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

76 CHAPTER 4 Call Stack Window

4.3 Call Stack Window

Ozone’s Call Stack Window displays the function call sequence that led to the current pro-
gram execution point.

Call Stack ﬂ

Funckion | Stack Info | SOlrce | PC I Return Address |
= Delay 16 @ 2000 FE02 L DiZonf.c: 837 0208 7600 Bld: D80 7968

_Init9ges 2 @ ZOOO Fels| LCDiConf.c; 939 0206 7964 [Z000FE1C]: 0806 7BO4
_InitCaontraoller 15 @ ZO00O F&z0 LD Conf,c: 1005 008 7EOO [Z000F&ZC] 0 0808 7BEDO
LCD_x_DisplayDriver 3Z @ ZOO0 F&30 LCDConf,c: 1089 0s0&8 7ECC [Z000F&4C] 0 0504 CDAS
_tzetDevFunc_Inik 0 @ z000 F&&0 0304 CDAd <m0 symbolss

Top af skack - Mo unwinding symbals at Q0304 DA 4

4.3.1 Overview

The topmost entry of the Call Stack Window informs about the current program execution
point. Each of the other entries displays information about a previous program execution
point. As an example consider the illustration above. Here, the fourth row describes the
program context that was attained when the PC was within function LCD_X Di spl ayDri ver
on the instruction that called function _InitController.

4.3.2 Table Columns

The Call Stack Window partitions program execution point information into 5 columns:

Table Column Description

Function The calling function’s name.

Stack Info Size and position of the stack frame of the calling function.

Source Source code location of the function call.

PC Instruction address of the function call (call site PC).
PC that will be attained when the program returns from the function

Return Address | call. This field is actually displayed as “location:value”, where “loca-
tion” is the target data location of the return address.

Note

A call site that the debugger cannot affiliate with a source code line is displayed as
the address of the machine instruction that caused the branch to the called function.

4.3.3 Unwinding Stop Reasons

The reason why call stack unwinding stopped is displayed at the bottom of the stack. Section
Errors and Warnings on page 196 gives possible causes of, and solutions to, incomplete
call stacks.

4.3.4 Active Call Frame

By selecting a table row within the Call Stack Window, the affiliated call frame becomes
the active program execution point context of the debugger. At this point, the Register and
Local Data Windows display content no longer for the current PC, but for the active call
frame. The active frame can be distinguished from the other frames in the call stack by
its color highlight.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

77 CHAPTER 4 Call Stack Window

4.3.5 Context Menu

The Call Stack Windows’s context menu hosts actions that navigate to a call site’s source
code or assembly code line (see Show Actions on page 206).

Show Source

Displays the selected call site within the Source Viewer (see Source Viewer on page 121).
This action can also be triggered by double-clicking a table row.

Show Disassembly

Displays the selected call site within the Disassembly Window (see Disassembly Window
on page 90).

Current Frame On Top

Selects the ordering of the frames on the call stack.

4.3.6 User Preferences

The table below lists all users preferences pertaining to the call stack (see Edit.Preference
on page 214).

User Preference Description

Specifies if the current frame is displayed at the top
PREF_CALLSTACK_LAYOUT or at the bottom of the call stack (see User Prefer-
ence Identifiers on page 189).

Selects the maximum amount of frames the call

PREF CALLSTACK DEPTH LIMT
- — - stack can hold.

4.3.7 Table Window

The Call Stack Window shares multiple features with other table-based debug information
windows (see Table Windows on page 49).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

78

CHAPTER 4 Code Profile Window

4.4 Code Profile Window

Ozone’s Code Profile Window displays runtime code statistics of the application being de-
bugged.

g

File | Funckion IS:::uru:e Coverage ‘TIInst.CDverage |Run C-:uurlLu:uau:I -
H f Systemlnit lo0.0% {11711} 100.0% (2643 1 o0.00%
+ f Reset_Handler 100.0% (575} 100.0% (575} 1 0. 00%
+ f SEGGER_RTT_printf 100.0% (3/73) 100.0% (8/8) 1082 1.0Z2%
H f main S9E.7% (78S 29.7% (3l0/: 1 [v] 1.47%
+ f SEGEER_RTT_wprintf g4_1% (58/69) 92.9% (2364 1082 [¥] 96.73%
=| f SEGEER_RTT_WrikeString gl.8% (9711} SZ2.4% (141" 3 W 0.09%
+) 165 Len=0; l00.0% (11} 100.0% (Z/2) 3 v 0.00%
= |c| 16&:if (5 ==MULL) { 0.0% (071} E0.0% (14Z2) 3 W 0.00%
02000792 CHMP R2, #0 Nfk 100.0% (141} 3 0.00%
02000754 EBNE < strlen»+0 N/A 0.0% (041 3 0.00%
+ |c| 167:return O 0.0% (071} 0.0% {0/2) oW o.o0%
o 17000F (fs==10) 4 100.0% (171} 100.0% (373) 1z1 [#] 0. 04%
+H |c| 173 Lend++; 100.0% (171} 100.0% {171} 115 [#] 0.01%
Ho|C| 174 544 100.0% (171} 100.0% {171} 118 [#] 0.01%
+H o] 175} whils (13; 100.0% (141} 100.0% (141} 118 [#] 0.01%
+ || 176: return Len; 1o0.0% (171} 100.0% (171) 3 0.00%
+ || 351:int SEGGER_RTT _WriteStringfL 100.0% {171} 100.0% (171% 3 o0.o00%
+ || 354 Len = _strlen(s); 100.0% (171} 100.0% {171} 2 0.00%
+ |c| 355! return SEGEER_RTT Write(Buf 100.0% {(1/1) 1o0.0% (272} 2 [w] 0.o0%

+ f _PrintUnsigned 78.8% (Z6/33) 23.1% (9401 1088 [] -

4| | LI—I

441 Setup

Section Setting Up Trace on page 158 explains how to configure Ozone and the hardware
setup for trace, thereby enabling the Code Profile Window.

4.4.2 Code Statistics

The Code Profile Window displays code statistics for different types of program entities
(PEs).

Program Entity

A program entity is either a source file, a function, an executable source line or a machine
instruction. Table items can be expanded to show their contained PEs.

Instruction Coverage

Amount of machine instructions of the PE that have been covered since code profile data
was reset. A machine instruction is considered covered if it has been “fully” executed. In
the case of conditional instructions, “full execution” means that the condition was both met
and not met. In the title figure, 99.7% or 310 of 311 machine instructions within function
main were covered.

Source Coverage

Amount of executable source code lines of the PE that have been covered since code profile
data was reset. An executable source code line is considered covered if all of its machine
instructions were fully executed. In the title figure, 98.7% or 78 of 79 executable source
codes lines within function main were covered.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

79 CHAPTER 4 Code Profile Window

Run Count

Amount of times a PE was executed since code profile data was reset.

Load

Amount of instruction fetches that occurred within the PE’s address range divided by the
total amount of instruction fetches that occurred since code profile data was reset.

Fetch Count

Amount of instruction fetches that occurred within the address range of the PE.

4.4.3 Execution Counters

The execution count, coverage and load information can be shown in the Code Windows,
as well. For more information, refer to Execution Counters on page 79.

4.4.4 Table Window

The Code Profile Window shares multiple features with other table-based debug information
windows (see Table Windows on page 49).

4.4.5 Filters

Individual PEs can be filtered from the code profile statistic. In particular, there are two
different type of filters that can be applied to PEs, as described below.

Profile Filter

When a profile filter is set on a PE, its CPU load is filtered from the code profile statistic.
After filtering, the load column displays the distribution of the remaining CPU load across
all none-filtered PEs.

Coverage Filter

When a coverage filter is set on a PE, its code coverage value is filtered from the code profile
statistic. After filtering, the code coverage columns displays coverage values computed as
if the filtered PE does not exist.

4.4.5.1 Adding and Removing Profile Filters

A profile filter can be set and removed via commands Profile.Exclude and Profile.Include
(see Code Profile Actions on page 201). In Addition, the load column of the Code Profile
Window provides a checkbox for each item that allows users to quickly set or unset the
filter on the item.

4.4.5.2 Adding and Removing Coverage Filters

A coverage filter can be set and removed via commands Coverage.Exclude and Cover-
age.Include (see Code Profile Actions on page 201). In Addition, the code coverage
columns of the Code Profile Window provide a checkbox for each item that allows users to
quickly set or unset the filter on the item.

4.4.5.3 Filtering Code Alignment Instructions

Compilers may place alignment instructions into program code that have no particular op-
eration and do never get executed. These so-called NOP-instructions can be filtered from
the code coverage statistic via context menu entry “Filter All NOP Instructions” or program-
matically via command Coverage.ExcludeNOPs (see Coverage.ExcludeNOPs on page 245).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

80 CHAPTER 4 Code Profile Window

4.4.5.4 Observing the List of Active Filters

The Code Profile Filter Dialog can be accessed from the context menu and displays all filters
that were set, alongside the affiliated user action commands that were executed.

446 Context Menu

The context menu of the Code Profile Window

provides the following actions: LC|| View! Source @l
|p] Wiew Disassembly CErl+D
Show Source —
‘= Exclude From Load & Cods Coverage Cel

Displays the selected item within the Source

. . Excluded From Code Coverage
Viewer (see Source Viewer on page 121). .

Excluded Frarm Load

Show Disassembly _

= Exclude...
Displays the selected item within the Disas- o Include...
sembly Window (see Disassembly Window on) _
page 90) < Remave All Filters alk+Del
_-T Shows Filkers. ..
Include/Exclude from
Reset Execukion Counkers ZErl+R

Filters or unfilters the selected item from the
load, code coverage or both statistics. Execution Counters in Source
Execution Counters in Disassembly

Exclude All NOP Instructions S Ry Els

Excludes all “no operation” (code alignment) Sort Respects Filters
instructions from the code coverage statistic. Farent-Relative Load
. v Filter Bar
Exclude (Dialog)
= Export...

Moves multiple items to the filtered set (see
Profile.Exclude on page 244).

Include (Dialog)

Removes multiple items from the filtered set (see Profile.Include on page 244).

Remove All Filters

Removes all filters.

Show Filters

Opens a dialog that displays an overview of the currently active filters.

Reset Execution Counters

Resets all execution counters (see Execution Counters on page 79).

Show Execution Counters in Source

Displays execution counters within the Source Viewer (see Source Viewer on page 121).

Show Execution Counters in Disassembly

Displays execution counters within the Disassembly Window (see Disassembly Window on
page 90).

Group by Files

Groups all functions into expandable source file nodes.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

81

CHAPTER 4 Code Profile Window

Sort Respects Filters

When this option is checked, filtered items are moved to the bottom of the table.

Parent Relative Load

When this option is checked, the CPU load of a table item is calculated as the total amount of
instructions executed within the item divided by the total amount of instructions executed
within the parent item. Otherwise, the total amount of instructions executed is used as
the divisor.

Export
Opens the Code Profile Report Dialog (see Code Profile Report Dialog on page 53).

4.4.7 Selective Tracing

Ozone can instruct the target to constrain trace data output to individual address ranges
(see Tracepoints on page 161). When selective tracing is active, it acts as a hardware
prefilter of code profile data.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

82 CHAPTER 4 Console Window

4.5 Console Window

Ozone’s Console Window displays application- and user-induced logging output.

=
Debug. Starti) : |
EeforeTargetConnect.
Targetlonnect.

J —

Exec.Connect() :
J-Link: connected to dewvice
LfterTargetConnect.

K

4.5.1 Command Prompt

The Console Window contains a command prompt at its bottom side that allows users to
execute any user action that has a command (see User Actions on page 35). It is possible
to control the debugger from the command prompt alone.

4.5.2 Message Types

The type of a console message depends on its origin. There are three different message
sources and hence there are three different message types. The message types are de-
scribed below.

45.2.1 Command Feedback Messages

When a user action is executed — be it via the Console Window’s command prompt or any
of the other ways described in Executing User Actions on page 35 — the action’s command
text is added to the Console Window’s logging output. This process is termed command
feedback. When the command is entered erroneously, the command feedback is highlighted
in red.

W ndow. Show(“ Consol e”) ;

45.2.2 J-Link Messages

Control and status messages emitted by the J-Link firmware are a distinct message type.

J-Li nk: Device STM32F13ZE sel ect ed.

4.5.3 Script Function Messages
The command Util.Log outputs a user-supplied message to the Console Window. Util.Log
can be used to output logging messages from inside script functions (see Util.Log on
page 225).

Executing Script Function “BeforeTarget Connect”.

45.4 Message Colors

Messages printed to the Console Window are colored according to their type. The message
colors can be adjusted via command Edit.Color (see Edit.Color on page 215) or via the
User Preference Dialog (see User Preference Dialog on page 65).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

83 CHAPTER 4 Console Window

455 Context Menu

The context menu of the Console Window provides the following actions:

Copy
Copies the selected text to the clipboard.
Select All

Selects all text lines.

Clear

Clears the Console Window.

Commands

Prints the command help.

4.5.6 Command Help

When command Help.Commands is executed, a quick facts table on all user actions in-
cluding their commands, hotkeys, and purposes is printed to the Console Window (see
Help.Commands on page 232). The command help can be triggered from the Console
Window’s context menu or from the main menu (Help — Commands).

|
View, Jource Symbol faddr /3rcLoc Shift+3 Displays the su:uux;l
TMatch. add Symbol Shifc+m A4dds a sywbol to
Window. Add Window, Symbaol 4dds a sywbol to
Window. Clear Windowr Clearz a window _
_;I—I pI

Command help displayed within the Console Window

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

84 CHAPTER 4 Data Graph Window

4.6 Data Graph Window

Ozone’s Data Graph Window traces the values of expressions over time (see Working With
Expressions on page 154).

4.6.1 Overview

The Data Graph Window employs J-Link’s High-Speed Sampling (HSS) API to trace the val-
ues of user-defined expressions at time resolutions of up to 1 microseconds. The sampling
of expressions starts automatically each time the program is resumed and stops automat-
ically each time the program halts. Users simply have to add expressions to the window,
similarly to the use case of the Watched Data Window. For further information on HSS,
please consult the J-Link User Guide .

4.6.2 Requirements

The Data Graph Window requires the target to support background memory access (BMA).

4.6.3 Window Layout

The Data Graph Window features three content panes — or views (3) — of which only one
is visible at any given time. The view can be switched by selecting the corresponding tab
within the tab bar (1). In addition, a toolbar (2) is provided that provides quick access to
the most important window settings.

Data Graph ﬂ

" Setup “n,uf Graphs /" Samples \ |I| 1 kHz ;I 200 ms | Diw LI Clear On Resume ;I + (=

Expression - | Type | Walue I Min I Max I Average I # Changes I Min. Change I Max. Change 3
Varl uint 13k u] zEd 105 Lzd -z246 10

Warl %= 150 uint 132 0 143 65_13Z LE4 -140 10
L3

4.6.4 Setup View

The Setup View allows users to assemble the list of expressions whose values are to be
traced while the program is running (see Working With Expressions on page 154). An
expression can be added to the list in any of the following ways:

via context menu entry Add Symbol.

via command Window.Add (see Window.Add on page 219).

via the last table row that acts as an input field.

by dragging a symbol from a symbol window or the Source Viewer onto the Setup View.

and removed from the list via:

e context menu entry Remove.
e command Window.Remove (see Window.Remove on page 219).

A graphed expression must satisfy the following constraints:

e the expression must evaluate to a numeric value of size less or equal to 8 bytes.
e all symbol operands of the expression must be either static variables or constants.

4.6.4.1 Signal Statistics

Next to its editing functionality, the Setup View provides basic signal statistics for each
traced expression. The meanings of the displayed values are explained below.

Min, Max, Average

Minimum, maximum and average signal values.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-sdk.html

85 CHAPTER 4 Data Graph Window

#Changes

The amount of times the signal value has changed between two consecutive samples.

Min. Change

The largest negative change between two consecutive samples of the symbol value.
Max. Change

The largest positive change between two consecutive samples of the symbol value.

46.4.2 Context Menu

The context menu of the Setup View provides the following actions:

Remove ¥ Bemaove Cel
Removes an expression from the window. Bl i .
Display (All) As PlEp =7 i '
Allows users to change the display format of the selected ex- €2, Add Symbal... Alt++
pression or all expressions. <¥ Remove Al b+l
Add Symbol Clear Data Chrl+R
Opens an input box that lets users add an expression to the

window.

Remove All

Removes all expression from the window.

Clear Data

Clears the HSS sampling data, i.e. resets the window to its initial state.

4.6.5 Graphs View

The Graphs View displays the sampling data as graphs within a two-dimensional signal plot.
The signal plot provides multiple interactive features that allow users to quickly understand
the time course of expressions both on a broad and on a narrow time scale.

Data Graph |
Jf Setup '\”.f @raphs "'.Ilf Samples \1 Sarmpling Freq.: 1 kHz ;I 200 ms | Div LI Clear ©On Resume j [E) @
Legend

| Time 0.000 284 000 s | Time 0.000 730000 s

[+ M MNumLEDs Cursor —0.000 446 000 s

[I MumlEDs * 3

N N S I

10

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

86 CHAPTER 4 Data Graph Window

4.6.5.1 Plot Legend

The plot legend links each graph to the affiliated expression. The [legend
legend can be moved around the plot by dragging its title bar. 7 Bl vart
The context menu of the plot legend allows users to select in-
dividual graphs for display and to adjust the display colors of
graphs. Checkboxes are provided to toggle the display of individ-
ual graphs.

W B varz % 10
[+ B o5 _Glabal, Time

4.6.5.2 Sample Cursor

The origin of the timescale is attached to the sample cursor. The

sample cursor also marks the time position of the data sample that | 0.000 360 000 < |

is currently selected within the Samples View (see Samples View

on page 88). The sample cursor can be displaced by dragging it —

to a new position or double-clicking on the signal plot. ‘l—‘
&

—

Pinned Sample Cursor 1200 ms

The sample cursor can be pinned to a fixed window position via
context menu entry “Cursor”. When pinned to the window, the sample cursor will always
stay visible regardless of any view modification.

4.6.5.3 Hover Cursor

The hover cursor is a vertical line displayed below the mouse cursor that

follows the movements of the mouse. At the intersection point of the hover E]T

cursor with each graph, a value box is displayed that indicates the graph’s r|—
-

signal value at that position. Each value box has got an expansion indicator
that can be clicked to show or hide the value box.

4.6.5.4 Interaction

Timescale

The plot’s timescale is given as the time-distance between adjacent ver-
tical grid lines (time per div). The “time per divisor” can be increased or decreased in any
of the following ways:

e by scrolling the mouse wheel up or down
e by using the drop-down list displayed within the toolbar
e by selecting a timescale via the context menu

Mouse Zooming

When the mouse wheel is scrolled, the plot scales around the position of the mouse cursor.
Thus, by moving the mouse cursor to a plot position of interest and then scrolling the mouse
wheel, users can quickly and precisely zoom into regions of the signal plot.

Selection Zooming

By holding down the right mouse button and

moving the pointer, a selection rectangle is

drawn. When a plot region was selected, the Fit Selection
context menu entry “Fit Selection” can be Fit Widkh
used to fit the selected region into view. | ; I Fit Height

Mouse Panning

The signal plot can be displaced by clicking
on the plot and then dragging the clicked position to the left or to the right.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

87

CHAPTER 4 Data Graph Window

Measuring Time Distances

A label is displayed next to the hover cursor that shows the time distance between the
positions of the hover and the sample cursor. By first positioning the sample cursor on a
point of interest and then moving the mouse cursor to another point of interest, the time
distance between these two positions can be precisely measured.

Vertical Auto-Scale

The scale of the y-axis cannot be changed randomly. Instead, the y-axis auto-scales at all
times so that all visible graphs fit completely into the available vertical window space.

Further interactive options are provided via the context menu, as summarized below.

4.6.5.5 Context Menu

The context menu of the Graphs View provides the following

- Fit 'width Chrl4+4
actions:
Fit Height Chrl+H
Fit Width Go To Cursar Chrl+i5
Adjusts the timescale so that all graphs are visible and oc- a0 Ta Time. .. Chrl+i
cupy the whole window width. Clear Data ChI+R
Fit Height Cursar >
Adjusts the timescale so that all graphs are visible and oc- Sampling Freq. '
cupy the whole window height. Time Scale G
Clear Event ¥
Go To Cursor
. . Draw Painks
Scrolls the Sample Cursor into view. , .
Iniform Sample Spacing
Go To Time v _Toolbar

Opens a time input dialog that when accepted, sets the
Sample Cursor to the given time and scrolls it into view.

Clear Data

Clears all sampling data, effectively resetting all graphs.

Cursor
Pins the sample cursor to a fixed window position or unpins it.
Sampling Frequency

The frequency at which all expressions are sampled (see Sampling Frequency on
page 88).

Timescale

Timescale used to plot the graphs of expressions (see Timescale on page 88).

Clear Event

The debugging event upon which the signal plot is cleared (see Clear Event on page 89).

Draw Points

When checked, sampling data is visualized as points instead of continuous signal graphs.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

88

CHAPTER 4 Data Graph Window

Uniform Sample Spacing

When checked, the timestamp of a graph sample is computed by multiplying the inverse
of the sampling frequency with the sample index. When unchecked, the timestamp given
by J-Link is used.

Toolbar
Toggles the toolbar.

4.6.6 Samples View

The Samples View displays the sampling data in a tabular fashion. Following two columns
that displays the index and timestamp of a sample, the remaining columns display the
values of each traced expression at the time the sample was taken.

Data Graph |
[Setup \/ Graphs \/ Samples 1kHz | somsjDiv | ClearOnResume =| (+ (=)
Index < |Time | vart | war1 = 150 | =]
2174 2.173 980 = 144 144
175 £.174 973 = 144 144 I |
Z1l7e 2.175 378 s ld4 ld4
177 £.176 373 = 144 144
178 £.178 017 = 144 144 ll

The selected table row and the position of the Sample Cursor are automatically synchro-
nized: changing one will also change the other.

46.6.1 Context Menu

4.6.

The context menu of the Samples View provides the following

actions: [+ Goka Time. .. Chrl+G

= Export.., Zkr[+E

Goto Time

Opens an input dialog that allows users to set the sample cursor
on a particular time position.

Export

Opens a file dialog that allows users to export the sampling data to a CSV file.

7 Toolbar

The Data Graph Window’s toolbar provides quick access to the most important window
settings (see Window Layout on page 84). The settings affiliated with each toolbar element
are described below, going from left to right on the toolbar.

4.6.7.1 Sampling Frequency

All expressions added to the Data Graph Window are sampled together at the same points
in time. This common sampling frequency can be adjusted via the context menu or the
toolbar of the Data Graph Window.

4.6.7.2 Timescale

The timescale input box allows users to adjust the signal plot’s x-axis scale. The timescale
is given as the time distance between adjacent vertical grid lines (time per div). The “+”
and “-" buttons on the right side of the toolbar can be used to increase or decrease the
timescale as well.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

89 CHAPTER 4 Data Graph Window

4.6.7.3 Clear Event

The toolbar’s “clear event” input box selects the debugging event upon which all HSS sam-
pling data is automatically cleared. The available options are:

Clear On Resume

Sampling data is cleared when program execution resumes or when the program is reset.

Clear On Reset

Sampling data is cleared when the program is reset.

Clear Never

Sampling data is never cleared automatically.

4.6.8 Power Graph Synchronization

Ozone keeps the sample cursors of the Data Graph Window and the Power Graph Window
synchronized at all times. This allows users to get a quick sense about which parts of
program code use how much power (see Cursor Synchronization on page 112).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

90

CHAPTER 4 Disassembly Window

4.7 Disassembly Window

4.7.

4.7.

4.7

Ozone’s Disassembly Window displays the assembly code interpretation of target memory
content. The window automatically scrolls to the position of the program counter when
the program is stepped; this allows users to follow program execution on the machine
instruction level.

ﬂ
22& 0200z297A BD3E POP {Rl,B4-BE5 PC} _:J
prwvlsQuensFull
{
537 0g00za97c BL38 PUISH {R3-B5, LE}
5327 0200237E o004 oY b4, RO
taskENTER CRITICAL()
537 08002980 F7FE FCEZ EL “yPortEnterCritical> ;8001344
ifi{ pxlueune-=uxMessagesWaiting == pxluene->uxLength)
537 020025984 cBAO LLE RO, [R4, #+0x32]
537 08002985 ZEE1 LLE Rl, [R4, #+0x3C]
@ L£3& 02002928 4288 CHMP RO, Rl
0O 0g00z9sh D10z ENE “prvls(uenseFull=-+0x16 ;8002392
xBeturn = pdTRUE;
£E3& 0g00z2598C Z00l Mow RO, #1 -
4| | 3

1 Assembly Code

Each standard text line of the Disassembly Window displays information about a particular
machine instruction. The instruction information is divided into 4 parts:

Address Encoding Mnemonic Operand

0800297C B538 PUSH {R3-R5,LR}

Instruction Encoding

The encoding of a machine instruction is identical to the data stored at the instruction’s
memory address. It is possible to toggle the display of instruction encodings (see Disas-
sembly Window Settings on page 67).

Syntax Highlighting

The Disassembly Window applies syntax highlighting to assembly code. The syntax high-
lighting colors can be adjusted via command Edit.Color (see Edit.Color on page 215) or
via the User Preference Dialog (see User Preference Dialog on page 65).

2 Execution Counters

The Disassembly Window may display the execution counts of individual instructions (see
Execution Counters on page 90).

.3 Base Address

The address of the first instruction displayed within the Disassembly Window is referred to
as the window’s base address.

4.7.3.1 Setting the Base Address

The base address of the Disassembly Window can be modified in any of the following ways:

e via context menu action GoTo.
e via command Show.Disassembly (see Show.Disassembly on page 222).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

91 CHAPTER 4 Disassembly Window

Note that command Show.Disassembly is accessible from the context menus of most sym-
bol windows.

4.7.3.2 Scrolling the Base Address

The base address of the Disassembly Window may be scrolled in any of the following ways:

Mouse Wheel Arrow Keys Page Keys Scroll Bar

4 Lines 1 Line 1 Page 1 Line

4.7.4 Context Menu

The Disassembly Window’s context menu provides the

following actions: @ Set Breakpaint 7

b Set Tracepoint (Skark)
Set/Clear/Edit Breakpoint ~ S T (S

Sets/Clears or Edits a breakpoint on the selected machine _

instruction (see Instruction Breakpoints on page 145). fk el e Sl
%] Run To Cursor Ctrl4+-F10
Set Tracepoint (Start/Stop)
|| Miew Source Ckrl+L
Sets a tracepoint on the selected machine instruction (see
Tracepoints on page 161). = Goko PC Chrl+P
Set Next PC Mt 30 TOL ., Chrl+3
Specifies that the selected machine instruction should be ¥ Execution Counters — Cr+E
executed next. Any instructions that would usually exe- v Source Lines
cute when advancing the program to the selected instruc- v Labels
tion will be skipped. v Instruction Encodings
Run To Cursor ¥ Export...

Advances the program execution point to the current cur-
sor position. All code between the current PC and the cursor position is executed.

Show Source

Displays the first source code line that is associated with the selected machine instruction
(as a result of code optimization during the compilation phase, a single machine instruction
might be affiliated with multiple source code lines).

Goto PC

Scrolls the viewport to the PC line.

Goto Address

Sets the viewport to an arbitrary memory address. The address is obtained via an input
dialog that pops up when executing this menu item.

Show Execution Counters

Toggles the display of Execution Counters (see Execution Counters on page 90).

4.7.5 Offline Functionality

The disassembly window is functional even when Ozone is not connected to the target. In
this case, machine instruction data is read from the program file. In fact, disassembly is
only performed on target memory when the program file does not provided data for the
requested address range.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

92 CHAPTER 4 Disassembly Window

4.7.6 Mixed Mode

The Disassembly Window provides two display options — Show Source and Show Labels —
that augment assembly code text lines with source code and symbol information, respec-
tively. These display options can be adjusted via the context menu or the User Preference
Dialog (see User Preference Dialog on page 65).

4.7.7 Code Window

The Disassembly Window shares multiple features with Ozone’s second code window, the
Source Viewer. Refer to Code Windows (see Code Windows on page 45) for a shared de-
scription of these windows.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

93 CHAPTER 4 Find Results Window

4.8 Find Results Window

Ozone’s Find Results Window displays the results of previous text searches.

FindResults |
Find all 'printf', Show filepaths, Current Document
C:/Exanples/3W0_STM3IZF103_MEBe7: I&R‘Application/3tart LEDElink.c(53): printf (Pr
C:/Examples/5W0_STM3ZF103_MEGT7Z TaR/Application/itart LEDElink.c(54): printf(\n
C:/Examples/3W0_STM3ZF103_MB6T7Z TaR/Application/3tart LEDElink.c(53): printf (I
Matching Lines: 3
4 | [

4.8.1 Search Results

The Find Results Window displays the results of text searches as a list of source code
locations that matched the search string. The search settings itself are displayed in the first
row of the search result text.

4.8.2 Text Search

A new text pattern search is performed using the Find In Files Dialog (see Find In Files
Dialog on page 57).

4.8.3 Context Menu
The Find Results Window’s context menu provides the following actions:

Copy
Copies the selected text to the clipboard.

Show In Editor

Displays the selected match result in the Source Viewer. The same operation is performed
by double-clicking on a match result.

Select All

Selects all text lines.

Clear

Clears the Find Results Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

94 CHAPTER 4 Functions Window

4.9 Functions Window

Ozone’s Functions Window lists all functions linked to assemble the debuggee, including
functions implemented within external code.

|
Marme I Lire I File I Address Range Iﬂ
& _[escentTree Mair.c 05000344-053000406
_InlineAddtod 17 Main.c
= _InlineMulkiple 31 Main.c
=l inlined in: _DescentTree 45 Main.c 050003553-08000404
_Inlineswap 23 Main.c ll

4.9.1 Function Properties

The Functions Window displays the following information about functions:

Table Column Description
Name Name of the function.
Line Line number of the function’s first source code line.
File Source code document that contains the function.
Address Range | Memory address range covered by the function’s machine code.

4.9.2 Inline Expanded Functions

A function that is inline expanded in one or multiple other functions can be expanded and
collapsed within the Functions Window to show or hide its expansion sites. As an example,
consider the figure above. Here, function _InlineMultiple has one expansion site: itis inline
expanded within function _Descent Tr ee.

4.9.3 Context Menu

The Function Windows’ context menu hosts actions that navigate to a function’s source
code or assembly code line (see Show Actions on page 206).

Set Clear Breakpoint

Sets or clears a breakpoint on the function’s first machine instruction.

Show Source

Displays the first source code line of the selected function within the Source Viewer (see
Source Viewer on page 121). If an inline expansion site is selected, this site is shown
instead.

Show Disassembly

Displays the first machine instruction of the selected function within the Disassembly Win-
dow (see Disassembly Window on page 90). If an inline expansion site is selected, this
site’s first machine instruction is displayed instead.

Show Call Graph

Displays the call graph of the function within the Call Graph Window (see Call Graph Window
on page 74).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

95 CHAPTER 4 Functions Window

4.9.4 Breakpoint Indicators

A breakpoint icon proceeding a function name indicates that one or multiple breakpoints
are set within the function.

495 Table Window

The Function Window shares multiple features with other table-based debug information
windows (see Table Windows on page 49).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

96 CHAPTER 4 Global Data Window

4.10 Global Data Window

Ozone’s Global Data Window displays global program variables.

ﬂ
Mame < | Walue Location Size | Type ﬂ
+ _acDownBuffer OxZ00004458 16 char[l&]

+ _aclpBuffer "SEGGEL Deal-Time-Termi OxZ000004%8 1024 char[l0Z4]
_Basepddr E 0xZ00004D0 4 uint
_onk 10 Ox200004F0 4 volatile int
_IsInited 1z 0xZ0000405 4 int

+ _pfEthISRHandler 0x0 0xZ00004ES 4 woid()* =
y 28 ot 2) R Y el TN Marll NarFrmnnAdAr ™ A BT SR
1 | _>|:1

4.10.1 Context Menu

The Global Data Window’s context menu provides the following actions:

Set/Clear Data Breakpoint Clear Data Breakpoink F2
Sets or clears a data breakpoint on the selected global (& Edit Data Breakpoint Fa
variable (see Data Breakpoints on page 147). @ watch Chrl
Edit Data Breakpoint | View Source kel
Opens the Data Breakpoint Dialog (see Data Breakpoint — [i ‘iew Data Clr+T
Dialog on page 55).

g pag) Display &s G
Watch Display Al &s 3
Adds the selected global variable to the Watched Data Expand All Shift++

Window (see Watched Data Window on page 133).

Show Source

Displays the source code declaration location of the selected global variable in the Source
Viewer (see Source Viewer on page 121).

Show Data

Displays the data location of the selected local variable in either the Memory Window
(see Memory Window on page 105) or the Registers Window (see Registers Window on
page 114).

Display (All) As

Changes the display format of the selected global variable or of all global variables (see
Display Format on page 44).

Expand / Collapse All

Expands or collapses all top-level nodes.

4.10.2 Data Breakpoint Indicator

A breakpoint icon preceding a global variable’s name indicates that a data breakpoint is
set on the variable.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

97 CHAPTER 4 Global Data Window

4.10.3 Table Window

The Global Data Window shares multiple features with other table-based debug information
windows provided by Ozone (see Table Windows on page 49).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

98 CHAPTER 4 Instruction Trace Window

4.11 Instruction Trace Window

Ozone’s Instruction Trace Window displays the history of executed machine instructions.

Instruction Trace ﬂ

—| remary_sek 103 ;I
Ul Us.oss S = =] Fo o LEU] SR YL, LEU]
0200 0334 2001 ADDE RO, #0x0l adds ro, r0O, #1
0s00 0336 EVFA E memory_set ; Ox0S0003ZE
0200 03ZE 47588 CMF RO, Bl cup rd, rl
os00 03320 Looz EEQ 0x05000338 ; <memory set>+0x04
ag00 0338 4770 B LE bx lr
+| _stark 4
+| merory_set 3
-] _stark 16
0200 0zZEZ 42332 LDE B0, =0xZ0000044 ; [0x0S0003E0]
0200 0ZE4 4933 LD E Bl, =0xE0000444 ; [O0x080003E4]
000 02Es 1a09 SUES Bl, Bl, BO subs rl, rl, r0
000 02ZES 2908 CHP Bl, #0x08 cmp rl, #2
0200 0zZEA LEOZ ELT 0x050002F4 ; < start=+0x30
0200 0zZEC 2200 Mays Rz, #0x00 wows rZ, g0
0200 0ZEE &00EZ 5TR Bz, [RO] sty rE, [r0]
0800 02F0 3004 ADDE RO, #0x04 adds r0, r0, #4 =
0200 0zZFZ 001 5TR Bl, [RO] str rl, [r0O] -
4 | _>I_I

4.11.1 Setup

Section Setting Up Trace on page 158 explains how to configure Ozone and the hardware
setup for trace, thereby enabling the Instruction Trace Window.

4.11.2 Instruction Row

The information displayed within a single text line of the Instruction Trace Window is par-
titioned in the following way:

Timestamp Address Encoding Mnemonic Operands

0.000 100 005 0800297C B538 PUSH {R3-R5,LR}

4.11.3 Instruction Stack

The Instruction Trace Window displays the program’s instruction execution history as a
stack of machine instructions. The instruction at the bottom of the stack has been executed
most recently. The instruction at the top of the stack was executed least recently. The
instruction stack is rebuilt when the program is stepped or halted. Please note that the
PC instruction is not the bottommost instruction of the stack, as this instruction has not
yet been executed.

4.11.4 Call Frame Blocks

The instruction stack is partitioned into call frame blocks. Each call frame block contains the
set of instructions that were executed between entry to and exit from a program function.
Call frame blocks can be collapsed or expanded to hide or reveal the affiliated instructions.
The number of instructions executed within a particular call frame block is displayed on the
right side of the block’s header.

4.11.5 Backtrace Highlighting

Both code windows highlight the instruction that is selected within the Instruction Trace
Window. This allows users to quickly understand past program flow while key-navigating

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

99

CHAPTER 4 Instruction Trace Window

through instruction rows. The default color used for backtrace highlighting is yellow and

can be adjusted v

ia command Edit.Color (see Edit.Color on page 215) or via the User

Preference Dialog (see User Preference Dialog on page 65).

4.11.6 Hotkeys

The Instruction Tra

ce Window provides multiple hotkeys to navigate instruction rows. The

table below gives an overview.

Hotkey Function
Right or + Expands the currently selected function node.
Left or — Collapses the currently selected function node. If an instruction is se-
lected, the function containing the selected instruction is collapsed.
Up Selects and scrolls to the next instruction.
Down Selects and scrolls to the previous instruction.
. Selects and scroll to the last (topmost) instruction of the currently se-
Shift+Up
lected call frame block.
. Selects and scroll to the first (bottommost) instruction of the current-
Shift+Down
ly selected call frame block.
PgUp Scrolls one page up.
PgDn Scrolls one page down.

4.11.7 Context

The context menu
vides the following

Set / Clear Break

Sets or clears a breakpoint on the selected instruction.

Set Tracepoint (Start/Stop)

Sets a tracepoint on the selected machine instruction Toggle Reference R
(see Tracepoints on page 161).

Show Source

Displays the source code line associated with the select- #: Block Start Shift+Lip
ed instruction in the bref{Source Viewer} % Block End Shift-+Down
Show Disassembly Expand Al Alt++
Displays the selected instruction in the Disassembly Win- =l Collapse Al Alt+-

dow (see Disassembly Window on page 90) v Instruction Encodings

Toggle Reference Timestamps '
Toggles the time reference point on the selected instruc- ¥ Expotk...

tion.

Menu

of the Instruction Trace Window pro-
operations:

Set Breakpoint Fa
B Sek Tracepoint (Start)

point Set Tracepoint (Stop)

Wiew Source Chrl+U

Wiew Disassembly kel

(=) [o,

Clear all References

Go To Reference

Go To Reference

Scrolls to the time

reference point preceding the selected instruction.

Clear All References

Clears all time reference points

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

100 CHAPTER 4 Instruction Trace Window

Block Start/End

Scrolls to the first/last instruction of the selected call frame.

Expand/Collapse All

Expands/Collapses all call frame blocks.

Instruction Encodings

Toggles the display of instruction encodings.

Timestamps

Selects the timestamp display format (nanoseconds, CPU cycles, instruction count or off).

Export

Opens a dialog that allows users to export the window contents to a CSV file.

4.11.8 Selective Tracing

Ozone can instruct the target to constrain trace data output to individual address ranges
(see Tracepoints on page 161). When selective tracing is active, it acts as a hardware
prefilter of trace data.

4.11.9 Export

Opens a dialog that can be used to export the contents of the Instruction Trace Window to
a CSV file. The same can be achieved programmatically by executing command Trace.Ex-
portCSV.

4.11.10 Automatic Data Reload

The Instruction Trace Window automatically adds more trace data to the instruction stack
each time the editor is scrolled up and the first row becomes visible.

4.11.11 Limitations

The Instruction Trace Window currently cannot be used in conjunction with the Terminal
Window’s printf via SWO feature.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

101

CHAPTER 4

4.12 J-Link Control Panel

The J-Link Control Panel displays the state of the debug probe and the state of ongoing
data transmissions between the target and the host PC. The control panel also allows users
to edit basic debug probe settings.

1-Link Conkrol Panel 3

J-Link - web control panel [General]

cenaral Settings Brezkpoints RTT Log CPU Regs Target Power SWW RAWTrace STrace LiveTrace Flash

Process; CrwworkhProjects\ LinkDebuggartrunk yozonehOutputh:
Module: CivworkhProjects\JuinkDebuggerstrunk Dz one\ Cutput:
Wersian: W&§.5353h, compiled Jul 5 2016 14:49:50

J-Link: SEGGER 1-Link ARM Pro W0, SH=17430110%

Selectad devics: Debugger: STMIZF40TIE, Internal: STMIZF40TIE

Endian: Litta
Waltage: 3.31 W

Target inberface: SWD (4000 kHz)
Hostinterface; USE (SM 1743011090

J-Link Control Panel

£

4.12.1 Overview

The J-Link control panel categorizes J-Link settings into multiple groups as summarized

below.

Control Panel Group

Description

General

Displays J-Link status information

Settings

Provides basic settings such as the log file and flash break-
points.

Breakpoints

Displays the target’s breakpoint, data breakpoint, and vector
catch state.

RTT Displays RTT output and provides basic RTT control settings.
Log Displays the contents of the J-Link lodfile.
CPU Regs Displays the state of the target’s core registers.

Target Power

Allows users to configure power output to the target and
shows the power status of the target.

Displays data that was received on the serial wire viewer

SWV from the target.

RAWTrace ;)éstplays unprocessed ETM trace data received from the tar-
STrace Displays processed ETM trace data.

LiveTrace Displays the streaming trace session status.

Flash Displays information about the target’s flash memory range.
Note

The control panel maintains a private communication channel with the debug probe. Ozone
is not notified about setting changes undertaken within the control panel. As Ozone main-
tains an internal state of J-Link settings, editing settings via the control panel may cause the
debugger to attain an inconsistent state and display erroneous behavior. For this reason,

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

102 CHAPTER 4 J-Link Control Panel

users are advised to edit J-Link settings via the J-Link Settings Dialog (see J-Link Settings
Dialog on page 61) or Ozone API commands (see User Actions on page 35) only.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

103 CHAPTER 4 Local Data Window

4.13 Local Data Window

Ozone’s Local Data Window displays local variables and function parameters.

A
MName I Yalue I Location | Size | Twpe -
+ acBuffer "printf Test: %.3c, OxZ0000884 char [&£4]
= BufferDesc OxZ0000&70 20 struct SEGGER_RTT [
+ pBuffer Oxz00002834 "printf Test: %. 0xZ0000370 4 char*

Buffersize =4 0xZ0000574 4 int

Znkt = 0xZ0000578 4 int

Returnvalue & 0xZ000087C 4 int

RTTEUfferlndex 2 0xZ0000850 4 uint -
1 | _r|:1

4.13.1 Overview

The Local Data Window allows users to inspect the local variables of any function on the
call stack. To change the Local Data Window’s output to an arbitrary function on the call
stack, the function must be selected within the Source Viewer or the Call Stack Window.
Once the program is stepped, the output will switch back to the current function.

4.13.2 Auto Mode

The Local Data Window provides an “auto mode” display option; when this option is active,
the window displays all global variables referenced within the current function alongside
the function’s local variables. Auto mode is inactive by default and can be toggled from
the window’s context menu.

4.13.3 Context Menu

The Local Data Window’s context menu provides the fol- | _
lowing actions: Clear Data Breakpoint F2

¢ Edit Data Breakpoint F3
Set / Clear Data Breakpoint @ watch Chl W
Sets a data breakpoint on the selected symbol or clears ' Visw S .
it (see Data Breakpoints on page 147). =] VIS SOLIEE e

[55] Wiew Data Chel+T
Edit Data Breakpoint

Display &s *

Opens the Data Breakpoint Dialog (see Data Breakpoint Display All As 5
Dialog on page 55). =

2 Collapse &l Shift+-
Watch

. auto Mode

Adds the selected local variable to the Watched Data

Window (see Watched Data Window on page 133).

Show Source

Displays the source code declaration location of the selected local variable in the Source
Viewer (see Source Viewer on page 121).

Show Data

Displays the data location of the selected local variable in either the Memory Window
(see Memory Window on page 105) or the Registers Window (see Registers Window on
page 114).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

104 CHAPTER 4 Local Data Window

Display (All) As

Changes the display format of the selected symbol or of all symbols (see Display Format
on page 44).

Expand / Collapse All

Expands or collapses all top-level nodes.

Auto Mode

Specifies whether the “auto mode” display option is active (see Auto Mode on page 103).

4.13.4 Data Breakpoint Indicator

A breakpoint icon preceding a local variable’s hame indicates that a data breakpoint is set
on the variable.

4.13.5 Table Window

The Local Data Window shares multiple features with other table-based debug information
windows provided by Ozone (see Table Windows on page 49).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

105

CHAPTER 4 Memory Window

4.14 Memory Window

Ozone’s Memory Window displays target memory content.

GoTo: O5_Glabal x| @ IE O @ @ IE | ¢ X ¥ Periodic Refresh: off |

L=

= =

zooooooo 0000 Qo000
z00000lo 0000 oooo
20000020 0O1EZ 0000
20000030 0000 0000
zOooooo40 0000 Qo000
20000050 0201 04032

0000 0000 0000 0000 0000 0000
0lCZ 0000 O1ES 0000 0000 0000 .. A...1_.
0000 0000 0000 0000 0000 0000 - .ooeeoooeaoo-.
oooo ooof] 0000 QOO0 OOOO 000D R........
0706 0908 7400 QA02 CDCD CDCD_ ... =. 1t hd

o000 o000 0000 0000 0530 2000 o, ‘:J
ol

4.14.1 Window Layout

The memory window displays target memory content in two different formats:

Hex Section

The central data section displays memory content as hexadecimal values. The value block
size can be adjusted to 1, 2 or 4 bytes. In the illustration above, the display mode is set
to 2 bytes per block value.

Text Section

The data section on the right side of the Memory Window displays the textual interpretation
(Latinl-decoding) of target memory data.

4.14.2 Base Address

The address of the first byte displayed within the Memory Window is referred to as the
window’s base address.

4.14.2.1 Setting the Base Address

The base address of the Memory Window can be set in any of the following ways:

e via command Show.Data (see Show.Data on page 222).
e via the goto-dialog accessible from the context menu.
e via the toolbar’s input box.

In each case, the following input formats are understood:

Input Format Example
Address 0x20000000
Address range 0x20000000, 0x200
Symbol 0S_d obal
Register Name SP

Expression

OS_d obal - >pTask + 0x4

For details on supported expressions, see Working With Expressions on page 154. When
the base address input has a deducible byte size, the corresponding address range is se-
lected and highlighted.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

106 CHAPTER 4 Memory Window

4.14.2.2 Scrolling the Base Address

The base address can be scrolled in any of the ways depicted in the table below.

Mouse Wheel Arrow Keys Page Keys Scroll Bar

4 Lines 1 Line 1 Page 1 Line

4.14.3 Symbol Drag & Drop

The Memory Window accepts drops of symbol and Registers Window items. When an item
is dropped onto the window, the item’s address range is highlighted and scrolled into view.

4.14.4 Toolbar

20000004 ~(D B @ B B0 & &£ & &

o

The Memory Window’s toolbar provides quick access to the window’s options. All toolbar
actions can also be accessed via the window’s context menu. The toolbar elements are
described below.

Address Box

The toolbar’s address box provides a quick way of modifying the base address, i.e. the
memory address of the first byte that is displayed within the Memory Window. When a
pointer expression is input into the address box, the Memory Window automatically scrolls
to the address pointed to each time it changes.

Access Width

The blue tool buttons allow users to specify the memory access width. The access width
determines whether memory is accessed in chunks of bytes (access width 1), half words
(access width 2) or words (access width 4).

Display Mode

The red tool buttons let users choose the display mode. There are three display modes that
correspond to the byte size of each hexadecimal value displayed within the hex section.
The display mode can be set to 1, 2 or 4 bytes per value.

Fill Memory
& Opens the Fill Memory Dialog (see Generic Memory Dialog on page 59)

Save Memory Data

+ Opens the Save Memory Dialog (see Generic Memory Dialog on page 59)

Load Memory Data

<+ Opens the Load Memory Dialog (see Generic Memory Dialog on page 59)

=i

Update Interval

= Opens the Auto Refresh Dialog (see Periodic Update on page 107).

L

4.14.5 Generic Memory Dialog

The Fill Memory, Save Memory and Load Memory features of the Memory Window are
implemented by the Generic Memory Dialog (see Generic Memory Dialog on page 106).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

107 CHAPTER 4 Memory Window

4.14.6 Change Level Highlighting

The Memory Window employs change level highlighting (see Change Level Highlighting on
page 107).

4.14.7 Periodic Update

The Memory Window is capable of periodically updating the displayed memory area at
a fixed rate. The refresh interval can be specified via the Auto Refresh Dialog that can
be accessed from the toolbar or from the context menu. The periodic refresh feature is
automatically enabled when the program is resumed and is deactivated when the program
is halted. It is globally disabled by clicking on the dialog’s disable button.

4.14.8 User Input

The current input cursor is shown as a blue box highlight. By pressing a text key, an edit
box will pop up over the selected value that allows the value to be edited. Pressing enter
will accept the changes and write the modified value to target memory.

4.14.9 Copy and Paste

The Memory Window allows users to select memory regions and copy the selected content
into the clipboard in one of multiple formats (see Context Menu on page 103). The current
clipboard content can be pasted into a target memory by setting the cursor at the desired
base address and then pressing hotkey Ctrl+V.

4.14.10 Context Menu

The Memory Window’s context menu provides the following actions:

Co Py Copy Chrl4+C
Copies the text selected within the hex-section to the clip- Copy Special '
board.

[Display 1 Bywte Ikems Chrl+1

Copy Special |E Display 2 Byte Items ~ Chrl+2

A submenu with 4 entries: ¢ Ok dByie T dilos

e Copy Text: copies the selected text-section content to El Access 1 Byte Ikems
the clipboard.

e Copy Hex: copies the selected hexadecimals in textual
format to the clipboard. E Access 4 Byte Items

e Copy Hex As C-Initializer: copies the selected

E Access 2 Byte Ikems

hexadecimals as comma separated list in textual Lo Bl bt
format to the clipboard (e.g. "0xAB, 0x23, 0x00") = Save

e Copy Binary: copies the selected hexadecimals as #* Load
octet-8 raw binary data to the clipboard. —

) M. Go To... k4G
Dlsplay Mode I Periodic Refresh. .. CErl+HR
Sets the display mode to either 1, 2 or 4 bytes per hexa-
decimal block. e Toolbar

Access Mode

Sets the memory access width to either byte (1), half-
word (2) or word (4) access.

Fill
Opens the Fill Memory Dialog (see Generic Memory Dialog on page 106).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

108

CHAPTER 4 Memory Window

Save

Opens the Save Memory Dialog (see Generic Memory Dialog on page 106).

Load

Opens the Load Memory Dialog (see Generic Memory Dialog on page 106).

Go To

Opens an input dialog that allows users to change the base address (see Base Address
on page 105).

Periodic Refresh

Opens the Auto Refresh Dialog from which the window’s periodic update interval can be
set (see Periodic Update on page 107).

Toolbar

Toggles the display of the window’s toolbar.

4.14.11 Multiple Instances

Users may add as many Memory Windows to the Main Window as desired.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

109

CHAPTER 4 Memory Usage Window

4.15 Memory Usage Window

4.15.1 Overview E
. , . 0800 086C - Al
The Memory Usage Window’s main areas
of application are:
Identifying invalid memory usage
A program data symbol may have been
erroneously stored to a special-purpose .
RAM region
such as a trace buffer. Another example _TestFunc2
would be a function that was downloaded i
to a non-executable memory area. e
Identifying erroneous build settings st
A linker may have placed program func- — ::!:.:::-.
tions outside the target’s FLASH ' _TestFuncO
address range or program variables out- -
side the RAM address range. BSP_TogglelED
. BSP_SetlED
4.15.2 Requirements .
The Memory Usage Window requires the BSP_Init
program file to be of ELF or compatible
format.
. memory _set
4.15.3 Window Layout —
Memory regions are grouped into three
columns: segments, data sections, and — e
symbols.
Segments 34 regions
The first column shown within the Mem- Reset Handler
ory Usage Window displays the memory -
type. Usually, the target will have a flash
and a RAM segment which are displayed
here. When no memory segment infor- e
mation was made available to the win-
dow, the segment column will be invisi-
ble. 000 0000 :I

Ozone’s Memory Usage Window displays the type and content hierarchy of target memory.

Data Sections

The central column of the Memory Us-
age Window displays the arrangement of ELF file data sections within the containing seg-
ment.

Symbols

The right-hand column of the Memory Usage Window displays the arrangement of program
symbols (functions and variables) within the containing data section.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

110 CHAPTER 4 Memory Usage Window

4.15.4 Setup

Section and symbol regions are automatically initialized from ELF program file data when
the program file is opened. Segment information must be supplied via a map file (see
below).

4.15.4.1 Supplying Segment Information

Ozone obtains memory segment information from the memory map file that was set via
command Target.LoadMemoryMap (see Target.LoadMemoryMap on page 251). Individual
segments can be added to the memory map via command Target.AddMemorySegment (see
Target.AddMemorySegment on page 251).

4.15.5 Interaction

The Memory Usage Window provides multiple interactive features that allow users to quickly
understand the target’s memory map on a broad and narrow scale. The interactive features
are described below.

4.15.5.1 Scrolling

The address range currently displayed within the Memory Usage Window can be scrolled
in any of the following ways:

e via the window’s scrollbars.
e via the horizontal or vertical mouse wheel
e by clicking somewhere and dragging the clicked spot to a new location.

4.15.5.2 Zooming

The vertical scale of the memory usage plot is given as the number of bytes that fit into
view. The vertical scale can be adjusted in the ways described below.

ROl Zooming I H _____

1
1
1
When the mouse cursor is moved over the memory usage i
1
1
1
1

plot while the left mouse button is held down, a selection
rectangle is shown. Once the mouse button is released, the
view will be scaled up (zoomed in) in order to match the
selected region. The ROI selection process can be canceled
using the ESC key.

Mouse Zooming

The view can be scaled around the mouse cursor position by scrolling the vertical mouse
wheel while holding down a control key. Using mouse wheel zooming, the region under the
cursor will not change position while the plot's zoom level is adjusted.

Zooming via Hotkey

The view can be zoomed in or out by pressing the plus or minus key.

Double-Click Zooming

A double-click on a region fits the region into view.

4.15.6 Context Menu

The Memory Usage Window’s context menu provides the following actions:

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

111 CHAPTER 4

Show Source

Shows the source code location of the selected memory region within the Source Viewer

(see Source Viewer on page 121).

Show Disassembly

Shows the disassembly of with the selected memory region within the Disassembly Window

(see Disassembly Window on page 90).

Show Data

Shows the selected memory region within the Memory Win-

dow (see Memory Window on page 105).

Zoom In

Increases the zoom level.

Zoom Out

Decreases the zoom level.

Show All Regions

Memory Usage Window

Wigt Source kel H-L
|| Wiew Disassembly kel
[i4] Wievs Daba Chel+T

Zoom In +

Zoam 2uk =

Show &l Reqgions B+~
0, Goka, ., Ckrl+3

Resets the zoom level so that all memory regions are fully visible.

Goto...

Opens an input dialog that allows users to input the address range or symbol name to

scroll to.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

112 CHAPTER 4 Power Graph Window

4.16 Power Graph Window

Ozone’s Power Graph Window tracks the current drawn by the target and displays the
resulting graph in an interactive signal plot.

4
fGraphs ﬁ'n,l,‘r Samples'\l Sampling Fregq.: 10 kHz j 500 ms [Div ;I Clear On Resume LI @ @
Y Legend
| Time 0,001 156 000 s |
¥ B Channel O [mé]

40 ma

Time 0.002 241 000 =

Cursor —0.001 185000 5
20 ma m
0 rné
T T & T T T T T T T T T T T @ T T T T T T T T T T T T T 1T

& +500 ms +1s i +1.55 +2 5 +2.55

Kl [ja

4.16.1 Hardware Requirements

The Power Graph Window requires the target to be powered by J-Link (over the debug
interface). Please refer to your MCU model’s user manual or contact SEGGER if unsure
about the capabilities of your target.

In case your target does not support power via J-Link, you may still want to check out
the capabilities of the Power Graph Window using SEGGER'’s lightweight Cortex-M trace
reference board.

4.16.2 Setup

J-Link power output to the target is switched off per default. Therefore, Ozone must be
instructed to activate power output to the target before a target connection is established.
To do this, system variable VAR _TARGET POWAER_ONis provided. The expected way to enable
power output to the target is to add the statement

Edi t . SysVar (VAR _TARGET POVNER ON, 1);

to project file function OnPr oj ect Load (see Event Handler Functions on page 167).

4.16.3 Usage
The Power Graph Window's user interface and interaction possibilities are identical to that

of the Data Graph Window (see Data Graph Window on page 84). Please refer to the Data
Graph Window’s section in order to learn about using the Power Graph Window.

4.16.4 Cursor Synchronization

The sample cursors of the Power Graph and Data Graph windows are automatically syn-
chronized. Moving one of the cursors will also move the other.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

113

CHAPTER 4 Power Graph Window

Daka Graph N
[Setup \J,-'(Graphs ﬁ'n,l.,'r Samples \ Sampling Freq.: 1 kHz j 15 Div LI Clear On Resume j =
L 4
| Time 0.002 060 000 s | Legend
i ¥ M MumlEDs

ST L R i

_2 = o
<1 0
Power Graph *
{ Graphs \I'U'{ Samples Sampling Freq.: 10kHz = 15/ Div x| Clear onResume *| (=) (#)

Legend

Y
| Time 0.002 060 000 s |
v W Channel 0 [mé]

50 ma

0 s
| I | I I [T | I |
-Zs -ls A +1s +25 +3s
KN 2
| CPU halked | Ln107 Ch1 | Connected @ 4 MHz

The synchronization of sample cursors allows users to establish a link between target power
consumption and program execution. In the example above, the debuggee switched 3 LED's
on and off in short succession. Global variable NumLEDs was incremented or decremented
each time an LED was switched on or off. As can be seen, the target’s power consumption
is directly proportional to the number of active LEDs. The power graph trails the data graph
by around 50 us, which is expected as the LED register is written shortly after the global
variable is updated.

4.16.5 Sample Limit

The sample limit of the Power Graph Window can be edited via the User Preference Dialog
(see User Preference Dialog on page 65) or programmatically via command Edit.Preference
using identifier PREF_MAX_POWER_SAMPLES as the first argument.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

114 CHAPTER 4 Registers Window

4.17 Registers Window

Ozone’s Registers Window displays the core, =
FPU and peripheral registers of the target. J
harne Yalue |
. =] = Curr. CPUReqgs Sv=z Hode
4.17.1 SVD Files no T
The Registers Window relies on System View R1 0x00000000
Description files (*.svd) that describe the regis- RZ 0x00000002
ter set of the target. The SVD standard is wide- R3 Dx00000000
ly adopted — many MCU vendors provide SVD R4 Dx00000002
register set description files for their models. RS 0x00000008
Core, FPU and CP15 Registers R (00000000
R7 0x00000000
Ozone ships with an SVD file for each supported RS Ox00000000
ARM architecture profile. When users select a Rg 0%x00000000
targe_t within th_e debgg_g_er_, the R_eglsters Win- 10 000000000
dow is automatically initialized with the proper R11L 00000000
SVD file so that core, FPU, and CP15 registers "
are displayed correctly. R1z 0x00000000
R13 0xZ0000B54
Peripheral Registers R14 O0x08000425
The SVD file describing the peripheral regis- RIS Ox0B000FDE
ter set of the target must be specified man- APSR 0x00 (nzevy)
ually. For this purpose, command Project.Ad- = EFSR 0x04000 (T}
dSvdFile is provided (see Project.AddSvdFile on # ICIIT Highliits b'00
page 239). Ozone does not ship with peripher- # ICIIT LowEits b'000000
al SVD files out of the box; users have to obtain > T b'l
the file from their MCU vendor. PSR Q=000
. Pritask. 0x0
4.17.2 Register Groups BasePri 0x00
FaultMask, 0x0
The Registers Window partitions target regis- :ut TS DKD :
ters into multiple groups: orre =0 (Lan)
CycleCount 0x00002 LAG
Current CPU Registers mm Al CPU Regs
. . . R Peripherals
CPU registers that are in use given the current

operating mode of the target.

All CPU Registers

All CPU registers, i.e. the combination of all operating mode registers.

FPU Registers

Floating point registers. This category is only available when the target possesses a floating
point unit. The command Target.SetFPU (see Target.SetFPU on page 251) can be used to
override the default floating point register access permission.

CP15 Registers

Coprocessor-15 registers. This category is only available when the target core contains a
CP15 unit.

Peripheral Registers

Memory mapped registers. This category is only available when a peripheral register set
description file was specified. (see SVD Files on page 114).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://developer.arm.com/embedded/cmsis
https://developer.arm.com/embedded/cmsis

115 CHAPTER 4 Registers Window

4.17.3 Bit Fields

-~ A register that does not contain a single value but rather one or multiple bit fields can
be expanded or collapsed within the Registers Window so that its bit fields are shown
or hidden. Bit fields can be edited just like normal register values.

Flag Strings

A bit field register that contains only bit fields of length 1 (flags) displays the state of it's
flags as a symbol string. These symbol strings are composed in the following way: the first
letter of a flag’s name is displayed uppercase when the flag is set and lowercase when it
is not set.

Editable Registers and Bit-Fields

Both registers and bit fields that are not marked as read-only within the loaded SVD file
can be edited.

4.17.4 Processor Operating Mode

An ARM processor’s current operating mode is displayed as the value of the current CPU
registers group (compare with the title figure). An ARM processor can be in any of 7 op-
erating modes:

USR SvC ABT IRQ FIQ SYS UND

User Supervisor | Abort Interrupt | Fast IRQ System Undefined

ARM processor operating modes

4.17.5 Context Menu

The Registers Windows’s context menu provides the follow- o |
ing actions: || View Source Chrl+-U
|| VMiew Disassembly Chrl+D
Show Source 1] Wiew Data Chrl4+T
Displays the source code line affiliated with the register val- _
. . . Display As ¢
ue (interpreted as instruction address).
Display all As ¥
Show Disassembly Expand All shift++
Displays the disassembly at the register value. [® Collapse Al Shifb+-
Show Data ., Find Mame. .. Chrl+F

Displays the memory at the register value (interpreted as
a memory address).

Display (All) As

Sets the display format of the selected item or the whole window.

Expand / Collapse All

Expands or collapses all top-level nodes.

Find Name

Scrolls to and selects a particular register.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

116 CHAPTER 4 Registers Window

4.17.6 Table Window

The Registers Window shares multiple features with other table-based debug information
windows provided by Ozone (see Table Windows on page 49).

4.17.7 Multiple Instances

Users may add as many Registers Windows to the Main Window as desired.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

117 CHAPTER 4 RTOS Window

4.18 RTOS Window

Ozone’s RTOS Window displays RTOS-specific application information and allows users to
set the execution context of any RTOS task as the current context displayed by the debug-

ger.
A
Stack Info
as 100 el ave (9700 | 128/ 512 @ 0%200000C0

MP Task 954 75 [Delaved 1(970) 164 /517 @ OxZ000031C Ox20
Ewal Task 13 G5 [waiting For Task Evert 132 [512 @ 0xz0000704 Oxz20
[LP Task 042 50 [Executing 144 | 512 @ 0x200005758 0x20
Background TaskS 1 [[waiting For message in Mailb 164 [256 @ Ox200010FC Ox20
Background Task 4 1 g [waiting for message in Que 164 | 256 @ Ox20000FFC Oxz0
Backaround Task 3 2 4 [wyaiting for Event Object 0x 156 [256 @ Ox20000EFC Oxz20
Backaround Task 2 1 3 [wwaiting For Memory Poaol 0%z 156 [256 @ Ox200000FC Qw20
Background Task 1 1 z [} waiting for Semaphore 0x20 156 [256 @ Ox20000CFC Ox20
Background Task0 1 1 [waiting For Mutex 0x200012 156 [256 @ 0x20000BFC Ox20
Idle [
< | i

RTOS Window displaying a task list.

4.18.1 RTOS Plugin

The RTOS Window’s application logic is provided by a JavaScript plugin. By implementing
a new plugin following the rules laid out in section RTOS Awareness Plugin on page 172,
support for a specific embedded operating system can be added to the RTOS Window.

Command Project.SetOSPlugin on page 235 loads an RTOS plugin. When this command
is placed into project file function OnPr oj ect Load, the plugin will be loaded each time the
project is opened. Refer to Project File Example on page 136 for further information.

Ozone ships with RTOS-awareness plugins for embOS, SEGGERs market-leading RTOS,
FreeRTOS, the most popular open source implementation and ChibiOS.

4.18.2 RTOS Informational Views

ﬂ
Timets I Marne | Tirmeout I Huoal: | Period I
Q200012102 Timetshark 10 {RO0) QxB0001F1 {_Timershort_Callback) z0
Q20001 1FC TimerLong 10 {ROO) QxB0001C9 {_TimerLong_Callback) 200
CUELES Marme | Messages I Buffer Address | Buffer Size | Wi'aiting Tasks I
Ox20001334 Queue 0 0 0x20001365 Q5 0x20000844 (Background Task 4)
Swskem Information | Yalue I
Swskem Skakus Lk,

Swskem Time a0
Current Task Q2000051 C (LP Task)

Active Task Q2000051 C (LP Task)
emb0S Build Debug + Prafiling (DP)
embidS Version 5.02a

RTOS window showing multiple RTOS informational views.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

118 CHAPTER 4 RTOS Window

Users — or rather RTOS plugin code — may add multiple tables to the RTOS Window, allowing
the display of multiple types of RTOS information and resources. For example, a task list
may be shown in one table and a semaphore list in another. Section RTOS Awareness Plugin
on page 172 describes the programming possibilities of the RTOS Window in detail.

RTOS informational views are laid out vertically within the RTOS Window’s display area and
can be resized freely.

4.18.3 Task Context Activation

By activating a table row of the task list, the register set of the corresponding task is made
the active execution context of the debugger. What this means is that:

o the Registers Window will show the values of the core registers at the time the task
was interrupted or suspended.

o the Call Stack Window will show the function calling hierarchy at the execution point
of the task.

e the Local Data Window will show the local variables and parameters at the execution
point of the task.

Identifying the Active Task

The active task can be identified by the arrow icon displayed at the left side of its table row.

4.18.4 Context Menu

Event Objects

Mailboxes

Memary Pools

Mukexes

Queues

Semaphares

System Information
v Task List

Timers

Wakchdags

The context menu of the RTOS Window shows an entry for each RTOS informational view.
By toggling an item, the affiliated view is shown or hidden.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

119 CHAPTER 4 Source Files Window

4.19 Source Files Window

Ozone’s Source Files Window lists the source files that were used to generate the debuggee.

sourcefiles A
File < | status Size | #Insts|Path -]
* * * * *

|| core_cm3bh compiled g4 37 ToolC/IAR fARM_Ye405) arm) CMSIS) Include)fcore_cm3.h

| cmsis_iath included 0 CTool/CJTAR JARM_Na405) arm/inc'cicmsis_iarh

| B3Rh included 0 C:,I'Examples,l'Bnard_SSS_STMSZF1DSEE_SWO_TESI:_IP.R,I'Inu:,l'EESF‘.h—l
|1 B3R compiled £80 120 CifExamples/Board_535_STM3IZF1053ZE_WO_Test_IAR[Setup)BSE
. ywalsh included 0 o) Tool/CfTAR) ARM _Wa30S)armfinccfywals.h -
= . S _*I_I

4.19.1 Source File Information
The Source Files Window displays the following information about source files:
File
Filename. An icon preceding the filename indicates the file status.

Status

Indicates how the compiler used the source file to generate the debuggee. A source file
that contains program code is displayed as a “compiled” file. A source file that was used to
extract type definitions is displayed as an “included” file.

Size
Byte size of the program machine code encompassed by the source file.

#Insts

The number of instructions encompassed by the source file.

Path

File system path of the source file.

4.19.2 Unresolved Source Files

A source file that the debugger could not locate on the file system is indicated by a
.4 yellow icon within the Source Files Window. Ozone supplies users with multiple options

to locate missing source files (see Locating Missing Source Files on page 156). The
user may also edit and correct file paths directly within the Source Files Window.

4.19.3 Context Menu
The context menu of the Source Files Window adapts to the selected file.

Open File

Opens the selected file in the Source Viewer (see Source Viewer on page 121). The same
can be achieved by double-clicking on the file.

Locate File

Opens a file dialog that lets users locate the selected file on the file system. This context
menu is displayed when the selected source file is missing.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

120 CHAPTER 4 Source Files Window

4.19.4 Table Window

The Source Files Window shares multiple features with other table-based debug information
windows (see Table Windows on page 49).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

121 CHAPTER 4 Source Viewer

4.20 Source Viewer

The Source Code Viewer (or Source Viewer for short) allows users to observe program
execution on the source-code level, set source breakpoints and perform quick adjustment
of the program code. Individual source code lines can be expanded to reveal the affiliated
assembly code instructions.

starbup_stm3zfdux.s X Y kasks.c X Y main.c > \ ¥

File Scope j| i wokartLEDFlashTasks ﬂ
107 woid vEtartLEDFlashTasks({ UBaseType t uxPriority) ;l
1 108
1 OS00ZA10 BL30 PUIZH {P4-BE LB}
1 O200ZA1Z EOZE SUE P, BP, #=20
1 OS00ZA14 ooog4 MoY B4, RO
105 EBaseType_t xLEDTaszk:
110
111 #* Create the three tasks. *7F
@1 11=7[= fori xLEDTask = 0; xLEDTask < ledNUMEER OF LEDE; ++xLEDTask |
1 0200ZalE zoono Mow RO, #0
1 og00zals aoos oY RL, RO
=% 2 | 0S00Za18 D03 CHMP DL, #32 -J
o 0g00zalc LAOF ECGE “wStartLEDFlashTasks=+0xZE ;200ZL3E
. 0200ZA30 1CED AT RS, RS, #£1
E 0200zazc ET7ED E “wStartLEDFlashTasks=+0xi 200ZL1L
113 {
114 f* Bpawm the task. */
2 11:5 [= xTaskCreate{ wLEDFlashTask, "LEDx", ledSTACE S5IZE, NULL, uxPriority
E OZ00ZALE zooo Moy RO, $0O
z O200ZAZ0 003 TR RO, [2P, #4+0x0C]
Z O200ZAZE pu [} Moy RO, #0O
s OS00ZAF4 00E 5TR RO

. [SD, #+0x08] =
1 b

4.20.1 Supported File Types

The Source Viewer is able to display documents of the following file types:
e C source code files: *.c, *.cpp, *.h, *.hpp

e Assembly code files: *.s
4.20.2 Execution Counters
Within a switchable sidebar on the left, the Source Viewer may display the execution counts
of individual source lines and instructions (see Execution Counters on page 121).
4.20.3 Opening and Closing Documents

Documents can be opened via the file dialog (see File Menu on page 38) or programmatically
via commands File.Open and File.Close (see File Actions on page 203).

4.20.4 Editing Documents

Ozone’s Source Viewer provides all standard text editing capabilities and keyboard short-
cuts. Please refer to section Key Bindings on page 123 for an overview of the key bindings
available for editing documents. It is advised to recompile the program following source
code modifications as source-level debug information may otherwise be impaired.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

122 CHAPTER 4 Source Viewer

4.20.5 Document Tab Bar
TR svstern_stm3zfecce X\ Mainc X\ RTOSInt_STM32F4x_CMSIS.c X \ >

The document tab bar hosts a tab for each source code document that has been opened
in the Source Viewer. The tab of the visible (or active) document is highlighted. Users can
switch the active document by clicking on its tab or by selecting it from the tab bar’s drop-
down button. The drop-down button is located on the right side of the tab bar.

4.20.5.1 Tab Bar Context Menu

The tab bar’s context menu hosts two actions that can be used to close the active document,
or all documents but the active one.

4.20.6 Document Header Bar

¥ Classl - | £ Classt hd

The document header bar provides users with the ability to quickly navigate to a particular
function within the active document. The header bar hosts two drop-down lists. The drop-
down list on the left side contains all function scopes (namespaces or classes) present
within the active document. The drop-down list on the right side lists all functions that are
contained within the selected scope. When a function is selected, the corresponding source
line is highlighted and scrolled into view.

4.20.7 Expression Tooltips

When text is selected within the Source Viewer, it is evaluated as an expression and the
result is displayed in a tooltip (see Working With Expressions on page 154).

dao |
c = *sFormat;
if {e = 'd' || = = 'S') |
brealk;
} E{IIDIIC}IIS

sFormat++;

FieldWidth = Fie| p... 1 o'
} while {(1): Hex: Oxl
Text: B
£i
£F Filver out prec| roearion: const |5
L Zime: 4 Bytes

MumDigits = 0;
c = *=zFormat;

Type: int

4.20.8 Symbol Tooltips

By hovering the mouse cursor over a variable, the variable’s value is displayed in a tooltip.
Please note that this feature only works for local variables when the function that contains
the local variable is the active function of the Local Data Window. A function can be activated
by selecting it within the Call Stack Window.

4.20.9 Expandable Source Lines

Each text line of the active source code document that contains executable code can be
expanded or collapsed to reveal or hide the affiliated machine instructions. Each such text
line is preceded by an expansion indicator that toggles the line’s expansion state. Further-
more, when the PC Line is expanded, the debugger’s stepping behavior will be the same
as if the Disassembly Window was the active code window (see Stepping Expanded Source
Code Lines on page 143).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

CHAPTER 4 Source Viewer

4.20.10 Key Bindings

This section gives an overview of the special-purpose and standard keys that can be used
with the Source Viewer.

Hotkeys

The table below provides an overview of the Source Viewer’s special-purpose key bindings.

Hotkey Description
Ctrl+Tab Selects the next document in the list of open documents.
Ctrl+Plus Expands the current line.
Ctrl+Minus Collapses the current line.
Alt+Plus Expands all lines within the current document.
Alt+Minus Collapses all lines within the current document.
Alt+Left Shows the previous location in the text cursor history.
Alt+Right Shows the next location in the text cursor history.
Ctrl+Wheel Adjusts the font size.

Special-Purpose key bindings of the Source Viewer

Standard Keys The table below provides an overview of the Source Viewer’s standard key
bindings. The Shift key can be held together with any of the below accelerators to extend
the text selection to the new cursor position.

Arrow key Moves the text cursor in the specified direction.
Page Up Moves the text cursor one page up.
Page Down Moves the text cursor one page down.
Home Moves the text cursor to the start of the line.
End Moves the text cursor to the end of the line.
Ctri+Left Moves the cursor to the previous word.
Ctrl+Right Moves the cursor to the next word.
Ctrl+Home Moves the text cursor to the start of the document.
Ctrl+End Moves the text cursor to the end of the document.
F3 Finds the next occurrence of the current search string.
Ctrl+F3 Finds the next occurrence of the word under the cursor.

Standard key bindings of the Source Viewer

4.20.11 Syntax Highlighting

The Source Viewer applies syntax highlighting to source code. The syntax highlighting colors
can be adjusted via command Edit.Color (see Edit.Color on page 215) or via the User
Preference Dialog (see User Preference Dialog on page 65).

4.20.12 Source Line Numbers

The display of source line numbers can be toggled by executing command Edit.Preference
using parameter PREF_SHOW LI NE_NUMBERS (see Edit.Preference on page 214) or via the
User Preference Dialog (see User Preference Dialog on page 65).

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

124 CHAPTER 4 Source Viewer

4.20.13 Context Menu

The Source Viewer’s context menu provides the following actions:

Set / Clear / Edit Breakpoint Clear Breakpoint Fa
Sets, clears or edits a breakpoint on the selected & Edit Ereakpoint. .. F&
source code line.)
"W Set Next Skatement Shifk+F10
Break On Change %] Run To Cursor Ctr4+F10
Sets a data break_poir_wt on the variable under th_e cut- ¢l View Source el
sor. The breakpoint is triggered when the variable’'s | =
value changes. |p| Miew Disassembly Ckel+Dr
_ [#] Wiew Data Chel+T
Set Tracepoint (Start/Stop) [3] ¥iew Call Graph Tl
Sets a tracepoint on the selected source code line
(see Tracepoints on page 161). @ Watch Chri+w
Set Next Statement — (EeimlRe Elrisit?
Goko Line, .. Chrl+L

Sets the PC to the first machine instruction of the se-
lected source code line. Any code between the cur- Callapse Line ChrlH-Left
rent PC and the selected instruction will be skipped,

! i Expand Al Shift++
i.e. will not be executed. ;

5 Collapse al Shift+-
Run To Cursor Select Al CErlH-a,
Advances program execution to the current cursor =] Find... Chrl+F
position. All code between the current PC and the e i R

cursor position is executed.

v Show Execution Counters Chrl+E

Show Source

Jumps to the source code declaration location of the
symbol under the cursor.

Show Disassembly

Displays the first machine instruction of the selected source code line in the Disassembly
Window (see Disassembly Window on page 90).

Show Data

Displays the data location of the symbol under the cursor within the Memory Window (see
Memory Window on page 105).

Show Call Graph

Displays the call graph of the function under the cursor within the Call Graph Window (see
Call Graph Window on page 74).

Watch

Adds the symbol under the cursor to the Watched Data Window (see Watched Data Window
on page 133).

Goto PC

Displays the PC line. If the source code document containing the PC line is not open or
visible, it is opened and brought to the front.

Goto Line

Scrolls the active document to the line number obtained from an input dialog.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

125

CHAPTER 4 Source Viewer

Expand / Collapse All

Expands or Collapses all expandable lines within the current document.

Select All
Selects all text lines.
Find

Displays a search dialog that lets users search for text occurrences within the active doc-
ument.

Numbering

Displays a submenu that allows users to specify the line numbering frequency.

Show Execution Counters

Toggles the display of Execution Counters (see Execution Counters on page 121).

4.20.14 Font Adjustment

The Source Viewer's font can be adjusted by executing command Edit.Font (see Edit.Font
on page 216) or via the User Preference Dialog (see User Preference Dialog on page 65).

Quick Adjustment of the Font Size

The font size can be quick-adjusted by scrolling the mouse wheel while holding down the
control key.

4.20.15 Code Window

The Source Viewer shares multiple features with Ozone’s second code window, the Dis-
assembly Window. Refer to Code Windows on page 45 for a shared description of these
windows.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

126 CHAPTER 4 Terminal Window

4.21 Terminal Window

Ozone’s Terminal Window provides bi-directional text I0 between the debugger and the
debuggee.

Terminal |

>» Output wia 3W0 active
printf wvia 3W0 test
printf wia SWO test

»> Semihosting I0 inactiwe

Debug. Skark(;|

4.21.1 Supported IO Techniques

The Terminal Window supports three communication techniques for transmission of textual
data from the debugger to the debuggee and vice versa that are described in Terminal IO
on page 153.

4.21.2 Terminal Prompt

The Terminal Window’s input text box is used to send textual data to the debuggee. The
terminal prompt is located at the bottom of the Terminal Window.

Input Termination

A string-termination character or a line break may be automatically appended to terminal
input before the text is sent to the debuggee. Input termination behavior can be adjusted
via the context menu or via command Edit.Preference (see Edit.Preference on page 214).

Asynchronous Input

Typically, the debuggee will request user input via the Semihosting or the RTT technique
upon which users reply via the terminal prompt. However, textual data can also be sent to
the debuggee when there is no pending input request. In this case, the text will be stored
at the next free RTT memory buffer location.

4.21.3 Context Menu

The Terminal Window’s context menu provides the follow-

ing actions: L] Copy Cerl+C
Copy Select Al CErH-A
<7 Clear Alk+Del
Copies the selected text to the clipboard. ot G Pt
Select All Capkure RTT
Selects all text lines. Capkure S0
Capkure Semihosking IO
Clear
. . Zero-Terminake Inpuk
Clears the Terminal Window. Echo Input
Clear On Reset End Of Line Input *

When checked, the window’s text area is cleared following
each program reset.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

127

CHAPTER 4 Terminal Window

Capture RTT

Indicates whether the Terminal Window captures text messages that are output by the
debuggee via SEGGER’s RTT technique.

Capture SWO

Indicates whether the Terminal Window captures text messages that are output by the
debuggee via the SWO interface.

Capture Semihosting 10

Indicates whether the Terminal Window listens to the debuggee’s Semihosting requests.

Zero-Terminate Input

Indicates if a string termination character (\0) is appended to user input before the input
is sent to the debuggee.

Echo Input

When checked, each terminal input is appended to the terminal window’s text area.

End Of Line Input

Specifies the type of line break to be appended to terminal input before the input is send
to the debuggee (see Newline Formats on page 186).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

128 CHAPTER 4 Timeline Window

4.22 Timeline Window

Ozone’s Timeline Window visualizes the course of the program’s call stack over time.

i
3 Timestamps: Cyvcles j @ J_@
k

|Cycle 76350779 | Cycle 76 350 813

CLrsor —34
ETask_'u'FF'

[Pends\ Handler
Q5 _Switch | 05 _SwitchafterISR_CortexM3
05_Deackivated
05 _WaikEventTimed
IP_Task
I | T T I |
-20 -10 A +10 +20 430 & +40
Al [i
4.22.1 Setup

Section Setting Up Trace on page 158 explains how to configure Ozone and the hardware
setup for trace, thereby enabling the Timeline Window.

In order to obtain a consistent output when debugging multi-threaded applications, either:

e an RTOS-awareness plugin must have been loaded (see Project.SetOSPlugin on
page 235) or

e information about program code that performs a task switch must have been supplied
(see OS.AddContextSwitchSymbol on page 253).

4.22.2 Overview

Each horizontal bar of the timeline plot represents a function invocation, or call frame. The
left and right boundaries of a call frame denote the points in time when the program entered
and exited the called function.

The current program execution point (PC) is located at the right side of the timeline plot.
Similar to the Code Windows, the PC is scrolled into view each time the program was
stepped or halted. When the program is halted, users may scroll the timeline plot to the
left in order to observe the call stack and execution path of the program at increasingly
past points in time. Trace data is automatically reloaded when the timeline plot does not
wholly cover the window.

4.22.3 Exception Frames

An exception handler or interrupt service routine frame is painted with rounded corners
and a deeper color saturation level (compare with PendSV_Handl er in the title figure).

4.22.4 Frame Tooltips

When the mouse cursor hovers over a call frame of the timeline plot, a tooltip pops up that
informs about frame properties such as the amount of encompassed instructions.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

129 CHAPTER 4 Timeline Window

4.22.5 Timescale

The timeline’s x-axis scale provides an overview of the time distances between timeline
events. The unit of the timescale can be toggled between the following options (see Context
Menu on page 126):

Timescale Unit Description
Time The distance between timescale ticks is displayed in a time unit with a
nanosecond resolution.
Cycles The distance between timescale ticks is displayed in CPU cycles.
Instruction The distance between timescale ticks is displayed in humber of in-
Count structions.

A fourth option “off” allows to hide the timescale.

4.22.6 Sample Cursor

The sample cursor marks the backtrace context instruction (see Backtrace Highlighting on
page 98). It also defines the position of the timescale origin. Next to the sample cursor, a
label showing its absolute time position is displayed.

Positioning the Sample Cursor b I@
The sample cursor can be positioned by:

e double-clicking on the timeline plot [[_Preparep:
e dragging it to a new position

e pressing the left or right arrow key (+/- 1 instruction) +2|::|:| e

e pressing the left or right arrow key while holding down the shift key

(+/- 1 div)
e pressing the page up or page down key (+/- 1 page)
e pressing the home or end key

Pinned Sample Cursor

The sample cursor can be pinned to a fixed window position (see Context Menu on
page 126). When pinned to the window, the sample cursor will always stay visible regard-
less of any view modification.

4.22.7 Hover Cursor

The hover cursor follows the movements of the mouse over the Time- : J
line Window. The time position of the hover cursor, as well as the Tirme 0.1¢
time distance to the sample cursor, are displayed next to the hover Cursor +0.0f
cursor.
. . FY T
4.22.8 Instruction Ticks 400 is

At high levels of zoom, vertical line indicators are displayed inside of
all call frames. Each neighboring pair of these instruction ticks bound the start and end of
a single instruction execution.

In the example illustration to the right, the first instruction required 3 | |
cycles to execute, while the following instructions were all executed in
a single cycle.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

130

CHAPTER 4

4.22.9 Backtrace Highlighting

Whenever the position of the sample cursor changes, the selected instruction is highlighted
and scrolled into view within the Code Windows and the Instruction Trace Window. Users
thus get a complete insight into the source code, disassembly and call stack context of any
instruction that is selected within the timeline.

Timeline Window

Ozone User Guide & Reference Manual (UM08025)

Instruckion Trace A/ thumb_crtd,s X\{STMSEFdrxx_Startup.s XY Tr
og000Z00 MOV Rz, #0 movs rz, #0O ﬂ Fi|E!SCI:I|:IE!
0g000zZl»z EL <memory_set> ;20003222 bl
=] memary_sek 3 2:2 * bne lb
020002E% CMP RO, Bl cmp x0, rl sralE by Lr
0000224 EEQ fmemory set +0xd -B0003EC . sag
0g20003EC EX LE bhx 1r - - chumb func
‘I I L 77 memc\ry_s;t:
] 278 [H cup rd, rl
Disassembly x 719 hEI; 1t
b lx Al zs0®m serw vz, [r0]
og0003z0 4770 B LE o1 [F adds r0, r0, #1
mEMOLY_Set Z8E [H b memory set
02000322 4788 CMFP ko, RB1 Faa -
beg 1f 784 ¥ bx lr
02000324 Looz EEQ CMEMOTY S 705
4I'“"1' == I“ j g= A4 default CO/C++ likrary hely
287
Timeling = 282 .macro HELPEER helper name
. i - Z859 .section _text_‘helper name
2 [Diw *| (4] (= - 4
f _I [:_) Q a0 -global “helper name
h 4 31 -weak ‘helper hame
"l | memary_set 232 Zhelper name:
z93 -thunbh fune
start 294 _endn
-26 -24 -2z Z3E
_4' J ﬂ £35 HELPER __ _aeabi read tp

| CPU halked

The sample cursor is synchronized with Ozone’s code and instruction windows.

The default color used for backtrace highlighting is yellow and can be adjusted via com-
mand Edit.Color (see Edit.Color on page 215) or via the User Preference Dialog (see User
Preference Dialog on page 65).

4.22.10 Task Context Highlighting

Instruction blocks that were executed by different threads of the target application are
distinguishable through the window background color. The task context highlighting feature
requires an OS-awareness-plugin to have been specified (see RTOS Awareness Plugin on

page 172).

ﬂ
1oy = # =
¥ =30y 4

05 _ChangeTask_WFP

Fendsly Handar

]

05_awitchAfterISR_CortexM3

:Fﬂndﬂf_ Hanghar]Enal:ult{

5 _InsertTask 5_StartTask | | 1P Logf
MainTask IP_Task.
-2340160 -2340150 -2340140 -2340130

I&)

J

2340120 4|EI
]

© 2013-2019 SEGGER Microcontroller GmbH

131 CHAPTER 4 Timeline Window

Task Context Highlighting.

4.22.11 Interaction

4.22.11.1 Panning

The timeline plot can be shifted horizontally or vertically by using the scrollbars or by clicking
on a window position and dragging the clicked position to a new location.

4.22.11.2 Zooming

The horizontal scale of the timeline plot can be increased or decreased in any of the following
ways:

e by scrolling the mouse wheel up or down
e by using the toolbar’s zoom slider
e by using the plus and minus buttons displayed within the toolbar

The vertical scale of the timeline plot is fixed.

4.22.11.3 Measuring Time Distances

The time distance between two timeline events can be measured by first setting the sample
cursor onto one event and then pointing with the hover cursor at the other; the hover cursor
label will then display the time distance between the events in the selected timescale unit.

4.22.12 Time Reference Points

k 4
| REF-0 0.185230401 s | Time 0.185 231 714 s
Cursor —0.001 278 71l =
REF-0 —0.000 001 3135

IH' SendF‘M EkF‘riu:ul

| SEGGER_SYSVIEW RecordErerIsR | InIsRMode||_TICK_Handle
SisTick_Handiar

05 _Idle

T | I I
A +1.278 ms - +1.273 ms +1.28 ms

To ease the measurement of time distances, the context menu provides an option to toggle
a time reference point at the position of the sample cursor. For each time reference point,
an additional label will be displayed next to the hover cursor that shows the time distance
between the hover cursor and the time reference point.

4.22.13 Settings

The following system variables are evaluated by the Timeline Window (see Edit.SysVar on
page 215):

Command Description

Maximum number of instructions that can be processed
and displayed by the Timeline Window.

Conversion factor used to convert execution times be-
tween CPU cycles and time units.

VAR _TRACE_MAX_| NST_CNT

VAR_TRACE_CORE_CLOCK

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

132

CHAPTER 4 Timeline Window

4.22.14 Context Menu

The Timeline window’s context menu hosts the following actions:

#+ G0 to start of Reset_Handler Ckrl+Left
= Gotoend of Reset_Handler Ckrl+Right

+ Go To previous Funckion on level

<+ Go To next funckion on level

+ Goto previous execution of Reset_Handler Ckrl+3hift+Left
=+ Go ko next execution of Reset_Handler Ctrl+Shift+Right

Toggle Reference =]
Clear all References
Go To Reference

o To Cursor kg

Cursor r

Timeskarmps >
v Toolbar

Goto start/end of frame

Scrolls to the first/last instruction of the selected frame.

Goto next/previous function on level

Scrolls to the first/last instruction of the previous/next frame.

Goto next/previous execution of frame

Scrolls to the next/previous execution of the selected frame

Toggle Reference

Toggles the time reference point at the position of the sample cursor.

Go To Reference

Scrolls to the nearest time reference point preceding the selected instruction.

Clear All References

Clears all time reference points.

Go To Cursor

Scrolls the sample cursor into view (see Sample Cursor on page 129).

Cursor

Pins the Sample Cursor to a fixed window position.

Timestamps

Selects the timescale unit (nanoseconds, CPU cycles, instruction count or off).

Toolbar
Toggles the toolbar.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

133 CHAPTER 4 Watched Data Window

4.23 Watched Data Window

Ozone’s Watched Data Window tracks the values of C-style expressions that the user chose
for explicit observation (see Working With Expressions on page 154).

ﬂ
Expressian £ | Walue Location Size Refresh | Type |
+ C5_Global 0xZ0000000 72 2 H= struct 0% _GLOBAL_ STRUCT
05 _Global. Time > 0x1000 0x0 const 4 Z H= int
SkackHP[3] 0xCDCDCDECD | OxZ00000658 4 Z Hz int

4.23.1 Adding Expressions

An expression can be watched, i.e. added to the Watched Data Window, in any of the
following ways:

via context menu entry Watch of any symbol window.

via command Window.Add (see Window.Add on page 219).
via context menu entry “Watch...” that opens an input dialog.
by dragging a symbol onto the window.

4.23.2 Local Variables

The Watched Data Window supports expressions that contain local variables. An expression
containing a local variable that is out of scope, i.e. whose parent function is not the current
function, displays the location text “out of scope” within the Watched Data Window.

4.23.3 Live Watches

The Watched Data Window supports live updating of hosted expressions while the program
is running. Each expression can be assigned an individual update frequency via the windows

context menu or programmatically via command Edit.RefreshRate (see Edit.RefreshRate
on page 216).

Note

The live watches feature requires the target to support background memory access
or the connected J-Link debug probe to support BMA emulation.

4.23.4 Table Window

The Watched Data Window shares multiple features with other table-based debug informa-
tion windows provided by Ozone (see Table Windows on page 49).

4.23.5 Context Menu

The Watched Data Window’s context menu provides the following actions:
Remove

Removes an expression from the window.

Set/Clear Data Breakpoint

Sets a data breakpoint on the selected expression or clears it (see Data Breakpoints on
page 147).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

134

Ozone User Guide & Reference Manual (UM08025)

CHAPTER 4

Edit Data Breakpoint

Watched Data Window

Opens the Data Breakpoint Dialog (see Data Breakpoint Dialog on page 55).

Show Source

Displays the source code declaration location of the selected variable in the Source Viewer

(see Source Viewer on page 121).

Show Data

Displays the data location of the selected variable in either the Memory Window (see Mem-
ory Window on page 105) or the Registers Window (see Registers Window on page 114).

Display (All) As

Changes the display format of the selected item or of all
items (see Display Format on page 44).

Refresh Rate

Sets the refresh rate of the selected expression (see Live
Watches on page 133).

Expand/Collapse All

Expands or collapses all top-level nodes.

Watch

Opens the Watch Dialog (see Working With Expressions
on page 154).

Clear

Removes all items from the Watched Data Window.

75 Remove Del
Clear Data Breakpoink Fa

¢ Edit Diaka Breakpoint F3

|c| Miew Source Ckrl+LI

[#] Wiew Data Chrl+T
Display As r
Display all As ¥
Refresh Rate r

2 Collapse &l Shift+-

Ty Watch... alk++

=¥ Clear alk+Del

© 2013-2019 SEGGER Microcontroller GmbH

Chapter 5
Debugging With Ozone

This chapter explains how to debug an embedded application using Ozone’s basic and ad-
vanced debugging features. The chapter covers all activities that incur during a typical de-
bugging session — from opening the project file to closing the debug session.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

CHAPTER 5 Project Files

5.1 Project Files

An Ozone project file (.jdebug) stores settings that configure the debugger so that it is ready
to debug a program on a particular hardware setup (microcontroller and debug interface).
When a project file is opened or created, the debugger is initialized with the project settings.

5.1.1 Project File Example

Illustrated below is an example project file that was created with the Project Wizard (see
Project Wizard on page 31). As can be seen, project settings are specified in a C-like syntax
and are placed inside a function. This is due to the fact that Ozone project files are in fact
programmable script files. Chapter 6 covers the scripting facility in detail.

/***
OnProj ect Load

Functi on description
Execut ed when the project file is opened. Required.

* Ok ¥ X

*
EE Ik Ik kS b I Ik Rk S Ik S Rk I bk S S Sk kS kS S kS
*/
voi d OnProjectlLoad (void) {
Proj ect. Set Devi ce (“STM32F103ZE");
Project.SetHostIF (“USB", “0");
Project. Set Targetl F (“SWD");
Proj ect. Set Tl FSpeed (“2 MHz");
File.Open (“C:./Exanpl es/ Bl i nky STM32F103_Kei | / Bl i nky/ RAM Bl i nky. axf”);

}

5.1.2 Opening Project Files

A project file can be opened in any of the following ways:

Main Menu (File — Open)

Recent Projects List (File — Recent Projects)
Hotkey Ctrl+0O

User action File.Open (see File.Open on page 208)

5.1.3 Creating Project Files

A project file can be created manually using a text editor or with the aid of Ozone’s Project
Wizard (see Project Wizard on page 31). The Project Wizard creates minimal project files
that specify only the required settings.

5.1.4 Project Settings

Any user action that configures the debugger in some way is a valid project setting — this
also includes user actions that alter the appearance of the debugger (see User Actions on
page 35).

5.1.4.1 Specifying Project Settings

Project settings are specified by inserting user action commands into the obligatory script
function OnPr oj ect Load (see Project File Example on page 136).

5.1.4.2 Program File

The program to be debugged can be specified via command File.Open. The file path argu-
ment can be specified as an absolute path or relative to the project file directory, amongst

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

137 CHAPTER 5 Project Files

others (see File.Open on page 208). Furthermore, please consider section Supported Pro-
gram File Types on page 138 for the list of supported program file types.

5.1.4.3 Hardware Settings

Hardware settings configure the debugger to be used with a particular target and debug
interface. The affiliated user actions belong to the “Project” category (see Project Actions
on page 204).

5.1.4.4 RTOS Plugin

The command Project.SetOSPlugin specifies the file path or name of the plugin that adds
RTOS awareness to the debugger (see Project.SetOSPlugin on page 235). Ozone currently
ships with three RTOS awareness plugins - SEGGER embOS, FreeRTOS and ChibiOS. A guide
on programming RTOS plugins is given by section RTOS Awareness Plugin on page 172.

5.1.4.5 Target Support Plugin

The command Project.SetCorePlugin specifies the file path of the plugin that adds support

for a particular MCU architecture to the debugger (see Project.SetCorePlugin on page 235).

Ozone currently ships with two target support plugins — one for ARM and one for RISC-V.
5.1.4.6 Source File Resolution Settings

Settings that allow Ozone to find source files that have been moved to a new location after
the program file was build are described in File Path Resolution Sequence on page 156.

5.1.4.7 Behavioral Settings

Settings that modify the behavior of debugging operations are referred to as “system
variables”. System variables can be edited via command Edit.SysVar (see Edit.SysVar on
page 215).

5.1.4.8 Required Project Settings

A valid project file must specify the following settings:

Setting Description

Project.SetDevice The name of the target device.

Project.SetHostIF Specifies how the J-Link debug probe is connected to the

Host-PC.

Project.SetTargetIF Specifies how the J-Link debug probe is connected to the
target.

Project.SetTifSpeed Specifies the data transmission speed.

5.1.5 User Files

When a project is closed, Ozone associates a user file (*.user) with the project and stores it
next to the project file. The user file contains window layout information and other appear-
ance settings in an editable format. The next time the project is opened, Ozone restores
the user interface layout from the user file. User files may be shared along with project
files in order to migrate the project-individual look and feel.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

138

CHAPTER 5 Program Files

5.2 Program Files

The program to be debugged is specified as part of the project settings or is opened man-
ually from the user interface.

5.2.1 Supported Program File Types

Ozone supports the following program file types:

e ELF or compatible files (*.elf, *.out, *.axf)
e Motorola s-record files (*.srec, *.mot)

e Intel hex files (*.hex)

e Binary data files (*.bin)

5.2.2 Symbol Information

Only ELF or compatible program files contain symbol information. When specifying a pro-
gram or data file of different type, source-level debugging features will be unavailable. In
addition, all debugger functionality requiring symbol information — such as the variable or
function windows — will be unavailable.

Debugging without Symbol Information

Ozone provides many facilities that allow insight into programs that do not contain symbol
information. With the aid of the Disassembly Window, program execution can be observed
and controlled on a machine code level. The target’s memory and register state can be ob-
served and modified via the Memory and Registers Windows. Furthermore, many advanced
debugging features such as instruction trace and terminal IO are operational even when
the program file does not provide symbol information.

5.2.3 Opening Program Files

When the program file is not specified as part of the project settings (using action
File.Open), it needs to be opened manually. A program file can be opened via the Main
Menu (File — Open), or by entering command File.Open into the Console Window’s com-
mand prompt (see File.Open on page 208).

Effects of opening a Program File

When an ELF- or compatible program file is opened, the program’s main function is dis-
played within the Source Viewer. Furthermore, all debug information windows that dis-
play static program entities are initialized. Specifically, these are the Functions Window
(see Functions Window on page 94), Source Files Window (see Source Files Window on
page 119), Global Data Window (see Global Data Window on page 96) and Code Profile
Window (see Code Profile Window on page 78).

5.2.4 Data Encoding

When an ELF or compatible program file is opened, Ozone senses the program file's data
encoding (data endianness) and configures itself for that encoding. Additionally, the endi-
anness mode of the attached target is set to the program file’s data encoding if supported
by the target. The target’'s endianness mode can also be specified independently via the
J-Link Settings Dialog (see J-Link Settings Dialog on page 61) and action Target.SetEndi-
aness (see Target.SetEndianess on page 250).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

139 CHAPTER 5 Starting the Debug Session

5.3 Starting the Debug Session

After a project was opened or created and a program file was specified, the debug session
can be started. The debug session is started via command Debug.Start (see Debug.Start on
page 226). This action can be triggered from the Debug Menu or by pressing the hotkey F5.

5.3.1 Connection Mode

The operations that are performed during the startup sequence depend on the value of
the connection mode parameter (see Debug.SetConnectMode on page 227). The different
connection modes are described below.

5.3.1.1 Download & Reset Program

The default connection mode “Download & Reset Program” performs the following startup

operations:
Startup Phase Description
Phase 1: Connect A software connection to the target is established via J-Link.
Phase 2: Breakpoints Pend_lng (data) breakpoints that were set in offline mode are
applied.
Phase 3: Reset A hardware reset of the target is performed.
Phase 4: Download The debuggee is downloaded to target memory.

The initial program operation is performed (see Initial Pro-

Phase 5: Finish gram Operation on page 139).

Flow Chart

Section Startup Sequence Flow Chart on page 195 provides a flow chart of the Download &
Reset Program startup sequence. This chart can be used as a reference when reprogram-
ming the sequence via the scripting interface.

5.3.1.2 Attach to Running Program

This connection mode attaches the debugger to the debuggee by performing phases 1 and
2 of the default startup sequence (see Download & Reset Program on page 139).

5.3.1.3 Attach & Halt Program

This connection mode performs the same operations as “Attach To Running Program” and
additionally halts the program.

5.3.1.4 Setting the Connection Mode

The connection mode can be set via command Debug.Set-
ConnectMode (see Debug.SetConnectMode on page 227),
via the System Variable Editor (see System Variable Editor b Attach to Running Program
on page 62) or via the Connection Menu (Debug — Start De-] attach & Halt Program

bugging). The Connection Menu is illustrated on the right.

{!} Cownload & Reset Program

5.3.2 Initial Program Operation

When the connection mode is set to Download & Reset Program, the debugger finishes the
startup sequence in one of the following ways, depending on the reset mode (see Reset
Mode on page 143):

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

140 CHAPTER 5 Starting the Debug Session

Reset Mode Initial Program Operation

Reset & Break at Symbol | The Program is reset and advanced to a particular function.
Reset & Halt The program is halted at the reset vector.
Reset & Run The program is restarted.

5.3.3 Reprogramming the Startup Sequence

Parts or all of the Download & Reset Program startup sequence can be reprogrammed. The
process is discussed in detail in DebugStart on page 169.

5.3.4 Visible Effects

When the start-up procedure is complete, the debug information windows that display
target data will be initialized and the code windows will display the program execution point

(PC Line).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

141 CHAPTER 5 Register Initialization

5.4 Register Initialization

5.4.1 Overview
Ozone initializes the program counter register (PC) and possibly also the stack pointer
register (SP) in an architecture-specific manner each time...
e a program file was downloaded to target memory.
e a hardware-reset of the target was performed.

In the download case, register initialization takes place after file contents have been written
to target memory and before the initial program operation is performed (see Initial Program
Operation on page 139).

Note

Ozone performs a hardware reset of the target...

e before a program file is downloaded
e when the program is user-reset

5.4.2 Register Reset Values

The standard register initialization values are depicted in the table below. The depicted
values apply for both download and hardware reset.

Architecture Initial PC Initial SP
Legacy ARM 0
Cortex-A/R 0
Cortex-M [0x4] [0x0]
RISCV-V 0

An empty table cell indicates that Ozone leaves the register uninitialized. A value in square
brackets means that the value is interpreted as a memory location from which the register
reset value is read.

5.4.3 Manual Register Initialization

Users are able to override Ozone’s default register initialization behavior by implementing
script functions Af t er Tar get Downl oad and/or Af t er Tar get Reset . When one of these script
functions is implemented, Ozone skips the standard register initialization procedure of the
named event. In this case, users are required to implement the script function in a manner
such that target registers are initialized according to their needs. Ozone’s scripting system
is discussed in detail in chapter Scripting Interface on page 20.

5.4.4 Project-Default Register Initialization

Ozone projects generated via the Project Wizard implement both script functions After -
Tar get Downl oad and After Tar get Reset and therefore override Ozone’s default register
initialization behavior per default (see Project Wizard on page 31). The register initialization
scheme of wizard-generated projects is depicted in the table below. The depicted values
apply for both download and hardware reset.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

142

CHAPTER 5

Register Initialization

Architecture

Initial PC

Initial SP

Legacy ARM <baseaddr >
Cortex-A/R <baseaddr >
Cortex-M [<baseaddr > + 4] [<baseaddr >]
RISCV-V <baseaddr >

<baseaddr > stands for the lowest memory address that was written to during download.
A value in square brackets means that the value is interpreted as a memory location from
which the register reset value is read.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

143 CHAPTER 5 Debugging Controls

5.5 Debugging Controls

Ozone provides multiple debugging controls that modify the program execution point in a
defined way.

55.1 Reset

The program can be reset via command Debug.Reset (see Debug.Reset on page 228).
The action can be executed from the Debug Menu (see Debug Menu on page 39) or by
pressing F4.

5.5.1.1 Reset Mode

The reset behavior depends on the value of the reset mode parameter (see Reset Modes
on page 185). The reset mode specifies which one of the three initial program operations
is performed after the target has been hardware-reset (see Initial Program Operation on
page 139).

Setting the Reset Mode

The reset mode can be set via command Debug.SetResetMode

(see Debug.SetResetMode on page 229), via the System Vari- | |g§= Reset & Break At Symbal
able Editor (see System Variable Editor on page 62) or via the G Reset & Halk

Reset Menu (Debug — Reset). The Reset Menu is illustrated on

the right. The symbol to break at can be specified by settings é Reset &Run

System Variable VAR BREAK_AT_THI S_SYMBOL.

5.5.2 Step

Ozone provides three user actions that step the program in defined ways. The debugger’s
stepping behavior also depends on whether the Source Viewer or the Disassembly Window
is the active code window (see Active Code Window on page 45). The table below considers
each situation and describes the resulting behavior.

Action Source Viewer is Disassembly Window
Active Code Window is Active Code Window
Steps the program to the next Advances the program by a sin-

source code line. If the current gle machine instruction by ex-
source code line calls a function, |ecuting the current instruction
the function is entered. (single step).

Debug.Steplnto

Performs a single step with the
Steps the program to the next particularity that branch with
source code line. If the current link instructions (BL) are over-
Debug.StepOver | source code line calls a function, |stepped, i.e. instructions are
the function is overstepped, i.e. | executed until the PC assumes

executed but not entered the address following that of the
branch.
Steps the program out of the Steps the program out of the
Debug.StepOut curren_t functioq to the source 'current'function t_o the machine
' code line following the function’s | instruction following the func-
call site. tion’s call site.

5.5.2.1 Stepping Expanded Source Code Lines

When the Source Viewer is the active code window and the source line containing the PC
is expanded to reveal it's assembly code instructions, the debugger will use its instruction
stepping mode instead of performing source line steps.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

144 CHAPTER 5 Debugging Controls

55.3 Resume

The program can be resumed via command Debug.Continue (see Debug.Continue on
page 228). The action can be executed from the Debug Menu or by pressing the hotkey F5.

5.5.4 Halt

The program can be halted via command Debug.Halt (see Debug.Halt on page 228). The
action can be executed from the Debug Menu or by pressing the hotkey F6.

555 RunTo

User action Debug.RunTo advances program execution to a particular function, source code
line or instruction address, depending on the command line parameter given (see De-
bug.RunTo on page 230). All instructions between the current PC and the destination are
executed. Both code windows provide a context menu entry “Run To Cursor” that advance
program execution to the selected code line.

55.6 Set Next Statement

User action Debug.SetNextStatement advances program execution to a particular source
code line or function. The action sets the execution point directly, i.e. all instructions be-
tween the current execution point and the destination location will be skipped (see De-
bug.SetNextStatement on page 230). The action is accessible from the context menu of
the Source Viewer.

55.7 Set Next PC

User action Debug.SetNextPC advances program execution to a particular instruction ad-
dress (see Debug.SetNextPC on page 230). The action sets the execution point directly,
i.e. all instructions between the current execution point and the destination execution point
will be skipped. The action is accessible from the context menu of the Disassembly Window.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

145 CHAPTER 5 Breakpoints

5.6 Breakpoints

Ozone provides many alternative ways of setting, clearing, enabling and disabling break-
points on machine instructions, source code lines, functions and program variables.

5.6.1 Source Breakpoints

A breakpoint that is set on a source code line is referred to as a source breakpoint. Tech-
nically, a source breakpoint is set on the memory addresses of one or multiple machine
instructions affiliated with the source code line.

5.6.1.1 Editing Source Breakpoints

Source breakpoints can be edited within the Source Viewer (see Source Viewer on
page 121), within the Breakpoints/Tracepoints Window (see Breakpoints/Tracepoints Win-
dow on page 72) or via commands Break.SetOnSrc, Break.ClearOnSrc, Break.EnableOnSrc,
Break.DisableOnSrc and Break.ClearAll (see Breakpoint Actions on page 201. Source code
locations are specified in a predefined format (see Source Code Location Descriptor on
page 182).

5.6.2 Instruction Breakpoints

A breakpoint that is set on the memory address of a machine instruction is referred to as
an instruction breakpoint.

5.6.2.1 Editing Instruction Breakpoints

Instruction breakpoints can be edited within the Disassembly Window (see Disassembly
Window on page 90), within the Breakpoints/Tracepoints Window (see Breakpoints/Tra-
cepoints Window on page 72) or via commands Break.Set, Break.Clear, Break.Enable,
Break.Disable and Break.ClearAll (see Breakpoint Actions on page 201).

5.6.3 Derived Breakpoints

An instruction breakpoint that was set implicitly by Ozone in 241 static woid Sens
order to implement a source breakpoint is referred to as a de- @ =4z
rived breakpoint. As a fixed part of their parent source break- |# 020047EE EBO3Z

point, derived breakpoints cannot be cleared individually. De-
rived breakpoints can be distinguished from user-set breakpoints by their smaller diameter
icon as depicted on the right.

5.6.4 Advanced Breakpoint Properties

Each breakpoint can be assigned a set of advanced (“extra”) properties that are evaluat-
ed/performed when the breakpoint is hit. The advanced properties of a breakpoint can be
edited via the Breakpoint Properties Dialog (see Breakpoint Properties Dialog on page 52)
or programmatically via command Break.Edit (see Break.Edit on page 257). Please re-
fer to section Breakpoint Properties on page 72 for an overview of all available advanced
breakpoint properties.

5.6.5 Permitted Implementation Types

Each breakpoint can be assigned a permitted implementation type (see Breakpoint Imple-
mentation Types on page 185). The permitted implementation type of a breakpoint can be
edited via the Breakpoint Properties Dialog (see Breakpoint Properties Dialog on page 52),
via the Breakpoints/Tracepoints Window (see Breakpoints/Tracepoints Window on page 72)
or programmatically via command Break.SetType (see Break.SetType on page 255).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

146

CHAPTER 5 Breakpoints

Default Permitted Implementation Type

For all breakpoints that have not been assigned a permitted implementation type, the val-
ue of system variable VAR BREAKPO NT_TYPE is used (see System Variable Identifiers on
page 191).

5.6.6 Flash Breakpoints

All J-Link/]-Trace debug probes come with a unique feature that allows the user to set an
unlimited number of software breakpoints when debugging in flash memory. Without this
feature, the user would be limited to the number of breakpoints supported by the target
CPU.

Note

For J-Link base debug probes, the “unlimited flash breakpoints” feature requires a
separate software license from SEGGER.

5.6.7 Breakpoint Callback Functions

Each breakpoint can be assigned a script function that is executed when the breakpoint
is hit. The script callback function can be assigned via the Breakpoint Properties Dia-
log (see Breakpoint Properties Dialog on page 52) or programmatically via commands
Break.SetCommand (see Break.SetCommand on page 263) and Break.SetCmdOnAddr
(see Break.SetCmdOnAddr on page 263).

5.6.8 Offline Breakpoint Modification

All types of breakpoints can be modified both while the debugger is online and offline. Any
modifications made to breakpoints while the debugger is disconnected from the target will
be applied when the debug session is started.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

147

CHAPTER 5 Data Breakpoints

5.7 Data Breakpoints

Data breakpoints monitor memory areas for specific types of I0 accesses. When a memory
access occurs that matches the data breakpoint’s trigger condition, the program is halted.
Data breakpoints are most commonly used to monitor accesses to global program variables.

5.7.1 Data Breakpoint Attributes
A data breakpoint is defined by the following attributes:

Attribute Description
Address Memory address that is monitored for IO (access) events.
Specifies which bits of the address are ignored when monitoring ac-
cess events. By means of the address mask, a single data breakpoint
Mask can be set to monitor accesses to several individual memory address-
es. More precisely, when n bits are set in the address mask, the data
breakpoint monitors 2n many memory addresses.
Variable or function parameter whose data location corresponds to
Symbol

the memory address of the data breakpoint.

On

Indicates if the data breakpoint is enabled or disabled.

Access Type

Type of I0 access that is monitored by the data breakpoint (see Ac-
cess Types on page 185).

Access Size

Number of bytes that need to be accessed in order to trigger the da-
ta breakpoint (see Memory Access Widths on page 184. As an exam-
ple, a data breakpoint with an access size of 4 bytes (word) will only
be triggered when a word is written to one of the monitored memory
locations. It will not be triggered when, say, a byte is written.

Match Value

Value condition required to trigger the data breakpoint. A data break-
point will only be triggered when the match value is written to or read
from one of the monitored memory addresses.

Value Mask

Indicates which bits of the match value are ignored when monitoring
access events. A value mask of OxFFFFFFFF disables the value condi-
tion.

5.7.2 Editing Data Breakpoints

Data breakpoints can be set, cleared and edited via the Data Breakpoint Dialog (see Data
Breakpoint Dialog on page 55). This dialog is accessible from the context menus of the
Code Windows and the Breakpoints/Tracepoints Window.

Data breakpoints can also be manipulated inside script functions. For this, the actions listed
in Breakpoint Actions on page 201 that end on either “*Data” or "Symbol” are provided.

Note

The amount of data breakpoints that can be set, as well as the supported values of
the address mask parameter, depend on the capabilities of the target.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

148 CHAPTER 5 Program Inspection

5.8 Program Inspection

This section explains how users can inspect and modify the state of the debuggee when it
is halted at an arbitrary execution point.

5.8.1 Execution Point

Users may navigate to the current position of program execution, also called the PC line,
via commands Show.PC (see Show.PC on page 223) and Show.PCLine (see Show.PCLine
on page 224).

5.8.2 Static Program Entities

Ozone provides 4 debug windows allowing users to inspect static program content that does
not change with the execution point. The capabilities of these windows are summarized
below.

Debug Window Description

Lists all functions linked to assemble the debuggee, including

Functions Window functions implemented within external code.

Displays the source code files that were used to build the de-

Source Files Window
buggee.

Displays the partitioning of target memory into Flash, RAM
Memory Usage Window | and other memory areas as well as the usage of these areas
by the debuggee.

Displays all possible function call paths, giving the user a

Call Graph Window clear picture on the possible execution flow.

5.8.3 Data Symbols

Ozone provides 3 symbol windows that allow users to observe, edit and modify program
variables and function parameters. The capabilities of these windows are summarized be-
low.

Debug Window Description

Allows users to observe and manipulate the local variables
and function parameters that are in scope at the execution
point. Furthermore, the Local Data Window is able to dis-
Local Data Window play the variables and parameters of any function on the call
stack. By selecting a called function within the Call Stack
Window or within the Source Viewer, the local symbols of
that function are displayed.

Global Data Window Allows users to observe and edit global program variables

Any program variable can be put under, and removed from,
explicit observation via commands Window.Add and Win-
Watched Data Window dow.Remove (see Window Actions on page 206). Observed
variables are displayed within the Watched Data Window
(see Watched Data Window on page 133).

Symbol Data Navigation

The data location of a variable or function parameter can be navigated-to by executing
the command Show.Data (see Show.Data on page 222). This action is available from the
context menu of all symbol windows.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

149 CHAPTER 5 Program Inspection

5.8.4 Symbol Tooltips

When hovering the mouse cursor over a data symbol within the 1 Fpa == 3y
Source Viewer, a tooltip will pop up that displays the symbol’'s
value (see Expression Tooltips on page 122). - —i!_ MurnLEDs
B2 1l Dec 0
5.8.5 Call Stack =L o
Loc 2000 0040
The sequence of function calls that led to the current execution Size 4 Bytes
point can be observed within the Call Stack Window (see Call Type olatile ink

Stack Window on page 76).

5.8.6 Target Registers

The current state of the target’s core and peripheral registers can

be inspected and edited via Ozone’s Registers Window (see Registers Window on page 114).
The commands Target.GetReg and Target.SetReg are provided to read and write core and
peripheral registers inside script functions or at the command prompt (see Target Actions
on page 205).

5.8.7 Target Memory

The current state of target memory can be inspected and edited via Ozone’s Memory Win-
dow (see Memory Window on page 105).

The commands:

Target.ReadUS8
Target.ReadU16
Target.ReadU32
Target.WriteU8
Target.WriteU16
Target.WriteU32

are provided to read and write target memory inside script functions or at the command
prompt (see Target Actions on page 205). These actions access memory byte (U8), half-
word (U16) and word-wise (U32).

5.8.7.1 Default Memory Access Width

The default access width that Ozone employs when reading or writing memory strides of
arbitrary size can be specified via the command Target.SetAccessWidth (see Target.SetAc-
cessWidth on page 249).

5.8.8 Inspecting a Running Program

When the debuggee is running, program inspection and manipulation is limited in the fol-
lowing ways:

Limitation Description

CPU registers are not updated and cannot be edit-
ed.

Values within symbol windows are not updated and
cannot be edited.

Frozen CPU registers

Frozen symbol windows

All debug controls except “halt” and “disconnect”

Deactivated debugging controls are deactivated.

Debug windows that show execution point context
No execution point context when the program is halted (Callstack, Local Da-
ta,...) are empty.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

150 CHAPTER 5 Program Inspection

All other features, such as terminal-IO and breakpoint manipulation, remain operational
while the debuggee is running.

5.8.8.1 Live Watches

In situations where the value of a data symbol needs to be monitored while the program
is running, users can resort to Ozone’s Watched Data Window (see Watched Data Window
on page 133). The Watched Data Window allows users to set refresh rates between 1 and
5 Hz for each watched item individually.

5.8.8.2 Symbol Trace

In situations where a high-resolution trace of a data symbol is required, users can resort
to Ozone’s Data Graph Window (see Data Graph Window on page 84). The Data Graph
Window supports sampling rates of up to 1 MHz and provides advanced navigation tools
for exploring the resulting data graph.

5.8.8.3 Streaming Trace

When used in conjunction with a SEGGER J-Trace PRO debug probe on hardware that sup-
ports instruction tracing, Ozone is able to update the application’s code profile statistics
continuously while the program is running. In contrast to non-streaming trace, the trace
data is recorded and sent continuously to the host PC, instead of being limited by the trace
probe buffer size. This allows “endless” recording of trace data and real-time analysis of
the execution trace while the target is running. For use-cases of streaming trace, refer to
Advanced Program Analysis And Optimization Hints on page 162. For further information
on streaming trace, please consult the J-Link User Guide or SEGGER’s website .

5.8.8.4 Power Trace

The Power Graph Window tracks the current drawn by the target while executing the de-
buggee and displays the resulting graph in an interactive signal plot.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-sdk.html
https://www.segger.com

151

CHAPTER 5 Downloading Program Files

5.9 Downloading Program Files

5.9.

5.9.

For the purpose of downloading program files to target memory, Ozone provides four dis-
tinct user actions:

e File.Open: (see File.Open on page 208)

e File.Load: (see File.Load on page 209)

e Exec.Download: (see Exec.Download on page 252)

e Target.LoadMemory: (see Target.LoadMemory on page 250)

These actions differ in the way the download is performed in regards to the following as-
pects:

e HWRESET: is a hardware reset of the target performed prior to download?

e SCRIPT: are script functions called at specific moments of the download?

e REGINIT: are registers initialized after download?

e FINISH: is the initial program operation performed after download?

e SYMBOLS: are program symbols loaded into Ozone’s symbol windows when the

program file is opened for download?

1 Download Behavior Comparison

The table below compares the mentioned actions regarding the named aspects. Only com-
mand File.Open triggers the standard download sequence that is also performed during
debug session startup (see Starting the Debug Session on page 139). The hardware re-
set is identical to the operation performed by command Exec.Reset (see Exec.Reset on
page 252). For a description of the initial program operation, please refer to section Initial
Program Operation on page 139.

User Action HWRESET SCRIPT REGINIT FINISH SYMBOLS

File.Open X X X X
File.Load
Exec.Download

Target.LoadMemory

2 Script Callback Behavior Comparison

Ozone’s download actions furthermore differ in regards to the script functions executed
during the download sequence. The table below gives an overview.

Script Function File.Open File.Load Exec.Download | Target.LoadMemory

BeforeTargetReset X

TargetReset

AfterTargetReset

BeforeTargetDownload

TargetDownload

X[X | X | X|X]|X

AfterTargetDownload

5.9.3 Avoiding Script Function Recursions

In order to avoid infinite script function recursions, users are advised to not use actions
File.Open and File.Load within any script function that is itself an event handler for the
command. Users are advised to use actions Exec.Download and Target.LoadMemory in
these places instead.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

152 CHAPTER 5 Downloading Program Files

5.9.4 Downloading Bootloaders

For details on how to configure Ozone for the download and execution of a bootloader prior
to the download of the debuggee, please refer to section Incorporating a Bootloader into
Ozone’s Startup Sequence on page 179.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

153 CHAPTER 5 Terminal 10

5.10 Terminal IO

Ozone supports printf-style debugging of the debuggee. A debuggee may send text mes-
sages to the debugger by employing one or multiple of the IO techniques described below.
Text output from the debuggee is shown within the Terminal Window (see Terminal Window
on page 126).

5.10.1 Real-Time Transfer

SEGGER’s Real-Time Transfer (RTT) is a bi-directional data transmission technique based
on a shared target memory buffer. Compared to SWO and Semihosting, RTT provides a
significantly higher data transmission speed. For further information on Real-Time Transfer,
please refer to SEGGER’s website .

5.10.1.1 RTT Configuration

Ozone will automatically sense whether the debuggee supports Text-IO via RTT. If RTT
support is detected, the debugger automatically starts to capture data on the RTT interface.
Text-I0 via RTT generally does not need to be configured within Ozone. However, when
no program file download is performed on debug start, it may be necessary to supply
RTT buffer location information (see Project.AddRTTSearchRange on page 236). On the
application program side, a special global program variable must be provided. Please refer
to SEGGER’s website for further information on how to set up and use RTT within your
debuggee.

5.10.2 SWO

The Terminal Window can capture and display textual data that is sent by the debuggee to
the debugger via the target’s Serial Wire Output (SWO) interface. SWO is a unidirectional
technology; it cannot be used to send data from the debugger to a debuggee.

5.10.2.1 SWO Configuration

Text-I0 via SWO must be configured both within the debuggee and within Ozone. Within
the debugger, it is enabled and configured via the Trace Settings Dialog (see Trace Set-
tings Dialog on page 63) or programmatically via commands Project.SetTraceSource (see
Project.SetTraceSource on page 236) and Project.ConfigSWO (see Project.ConfigSWO on
page 239). The SWO interface can also be enabled by checking the Terminal Window’s
context menu item “Capture SWO I0O". Please refer to the ARM Information Center for de-
tails on how to set up and use printf via SWO in your application.

5.10.3 Semihosting

Ozone is able to communicate with the debuggee via the Semihosting mechanism. Next
to providing bi-directional text I/O via the Terminal Window, the debuggee can employ
Semihosting to perform advanced operations on the Host-PC such as reading from files.
For a complete discussion on Semihosting, please refer to the ARM information center .

5.10.3.1 Semihosting Configuration

The Semihosting interface can be enabled or disabled via command Project.SetSemihosting
(see Project.SetSemihosting on page 237) or via the Terminal Window’s context menu
item “Capture Semihosting I0”. Semihosting configuration parameters can be edited via
command Project.ConfigSemihosting (see Project.ConfigSemihosting on page 237). The
debuggee must also apply special assembly code to emit semihosted text messages. Please
refer to the ARM Information Center for details on how to set up and use semihosting within
your debuggee.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://www.segger.com
https://www.segger.com
http://infocenter.arm.com/help/index.jsp

154 CHAPTER 5 Working With Expressions

5.11 Working With Expressions

In Ozone, an expression is a term that combines symbol identifiers or numbers via arith-
metic and non-arithmetic operators and that computes to a single value or symbol. Ozone-
style expressions are for the most part C-language compliant with certain limitations as
described below.

5.11.1 Areas of Application

Expressions can be employed in the following areas:

¢ As monitorable entities within the Watched Data Window
(see Watched Data Window on page 133).

e As monitorable entities within the Data Graph Window
(see Data Graph Window on page 84).

e As specifiers for the data locations of data breakpoints
(see Data Breakpoints on page 147).

e As specifiers for the trigger conditions of conditional breakpoints
(see Advanced Breakpoint Properties on page 145).

e At the command prompt or within Project Scripts
(see ElIf.GetExprValue on page 264).

e Within RTOS Awareness Plugins
(see Debug.evaluate on page 271).

5.11.2 Operands

The following list gives an overview of valid expression operands:

e Global and local variables (e.g. 0S_d obal, Pixel Si zeX)

e Variable members (e.g. 0Ss_d obal . pTask->I D, OS_d obal . Ti ne)
e Numbers (e.g. OXAEQ1, 12.4567, 1000)

e Program defines (e.g. MAX_SPEED)

e Ozone variables & constants (e.g. VAR _ACCESS W DTH, FREQ 1 MHZ)

e User-defined constants (see Script.DefineConst on page 226)

5.11.3 Operators

The following list gives an overview of valid expression operators:

e Number arithmetic (+, -, %/, %)

e Bitwise arithmetic (~, & |, ™)

e Logical comparison (&&, |1

e Bit-shift (>>, <)

e Address-of (&)

e Size-of (sizeof)

e Number comparison (>, <,2, 5, ==,1=)

e Pointer-operations *, 11, ->)

e Integer-operations (++, —)

e Type-casts (see Type Casts on page 154)

The evaluation order of an expression can be controlled by bracketing sub-expressions.

5.11.4 Type Casts

The typecast operator “(<dest>)<src>" supports the following source and destination

types:

<src>

e Integers (e.g. 0x20000000)

e Program Variables (e.g. OS_d obal)

e Members (e.g. OS_d obal .Time)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

155 CHAPTER 5 Working With Expressions

<dest>

e Pointers and References (e.g.int* /| Type& / Type*)
e Arrays (e.g. char[128] / Type[20])
e Base types (e.g.int / double)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

156 CHAPTER 5 Locating Missing Source Files

5.12 Locating Missing Source Files

This section discusses the handling of source code files that Ozone could not locate on the
file system.

5.12.1 Causes for Missing Source Files

When a source code file has been moved from its compile-time location to a different
directory on the file system, the debugger is (in most cases) not able to locate the file
anymore. Due to performance reasons, Ozone only performs a limited file system search
to locate unresolved source code files.

Invalid Root Path

A second reason why one or multiple source files might be missing is that the debugger was
not able to determine the program’s root path correctly. The program’s root path is defined
as the common directory prefix that needs to be prefixed to relative file paths specified
within the program file.

5.12.2 Missing File Indicators

A missing source file is marked with a yellow warning sign within the Source Files Window.
Additionally the Source Viewer will display an informative text instead of file contents when
the program’s execution point is within a missing source code file. The context menu of
missing source files provide an entry that lets users open a file dialog to locate the file (see
Unresolved Source Files on page 119.

5.12.3 File Path Resolution Sequence

This section describes Ozone’s automatic file path resolution mechanism that is employed
whenever a file path argument is encountered that does not point to a valid file on the
file system.

The file path resolution sequence can be configured via script commands which allows users
to correct the file paths of missing source code files.

File path resolution is employed for all file types and is not restricted to source files. The
sequence of operations and its configuration options are described below.

Step 1 - Path Substitution

Step 1 of the file path resolution sequence is applied to source files paths only. Any parts
of the unresolved file path that match a user-set path substitute are replaced with the
substitute (see Project.AddPathSubstitute on page 241). If the file path obtained from
path substitution points to a valid file on the file system, resolution is complete.

Step 2 - Alias Name Substitution

If the user has specified an alias for the file path to resolve, the path is replaced with the
alias (see Project.AddFileAlias on page 240). If the alias points to a valid file on the file
system, resolution is complete.

Step 3 - Path Expansion

All directory macros and environment variables contained within the file path are expanded
(see Directory Macros on page 194). If the expanded file path points to a valid file on the
file system, resolution is complete.

Step 4 - Source File Root Paths

Step 4 of file path resolution is only applied to relative file paths. Unresolved relative file
paths are appended successively to each source file root path (see Project.AddRootPath on

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

157

CHAPTER 5 Locating Missing Source Files

page 240). If any of the so-obtained file paths points to a valid file on the file system,
resolution is complete.

Step 5 - Application Directories

Step 5 of file path resolution is only applied to relative file paths. Unresolved relative file
paths are appended successively to each of the application directories listed in Directory
Macros on page 194. If any of the so-obtained file paths points to a valid file on the file
system, resolution is complete.

Step 6 - Search Directories

Step 6 of file path resolution is applied to both absolute and relative file paths. The file
name of unresolved file paths is searched within all user-specified search directories (see
Project.AddSearchPath on page 241). If any of the search directories contains a file with
the sought name, resolution is complete.

5.12.4 Operating System Specifics

File path arguments are case-insensitive on Windows and case sensitive on Linux and ma-
cOS. When debugging an application on a system that differs from the build platform, ad-
justments to the project file’s path resolution settings might be required in order for the
debugger to be able to locate all files.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

158 CHAPTER 5 Setting Up Trace

5.13 Setting Up Trace

This section describes the configuration of trace within Ozone. For a general overview on
trace with J-Link and J-Trace, please refer to the J-Link User Guide and SEGGER’s website .

5.13.1 Trace Features Overview

Ozone’s trace features consist of the following elements:

e Instruction Trace Window (see Instruction Trace Window on page 98)
e Timeline Window (see Timeline Window on page 128)

e Code Profile Window (see Code Profile Window on page 78)

e Execution Counters (see Execution Counters on page 121)

5.13.2 Target Requirements
Ozone currently supports trace on the following MCU architectures:

e Cortex-M
e Cortex-A

ARM’s Cortex MCU architecture principally allows two ways how trace data may be moved
from the target to the PC: in a buffered (ETB) and a streaming (ETM) fashion. ETM trace
has many advantages over ETB trace but also an extended hardware requirement (see
Streaming Trace on page 150).

5.13.2.1 Target Requirements for ETB Trace

Buffered trace requires the target to contain an embedded trace buffer (ETB). The trace
buffer must be accessible to J-Link, i.e. accessible via the selected target interface. ETB-
Trace otherwise poses no additional requirements on the hardware setup.

5.13.2.2 Target Requirements for ETM Trace

Streaming trace requires the target CPU to contain an embedded trace macrocell (ETM) or
a program trace macrocell (PTM). The trace data generated by these units is emitted via
dedicated CPU pins. It is target dependent if these trace pins are present and to what type
of debug header they are connected, if any. Most commonly, the trace pins are routed to
a 19-pin Samtec FTSH “trace” header.

5.13.3 Debug Probe Requirements

e ETB trace is supported by all J-Link and J-Trace models.
e ETM trace requires a J-Trace PRO model to be employed.

5.13.4 Trace Settings

e ETB trace does not need to be configured in Ozone.

e ETM trace has multiple configuration settings which can be edited via the Trace Settings
Dialog (see Trace Settings Dialog on page 63) or via debugger commands as shown
below.

Command Description Default

Selects the trace source to use. See Trace Sources

on page 186 for the list of valid values. none

Project.SetTraceSource

Project.SetTrace- Specifies the number of trace pins provided by the 4
PortWidth target. Permitted values are 1, 2 and 4.

Configures the sampling delay of trace pin n (n=1... 2.0ns
4). The valid value range is -5 to +5 nanoseconds '

Project.SetTraceTiming

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-sdk.html
https://www.segger.com

159 CHAPTER 5 Setting Up Trace

Command Description Default
at steps of 50 ps. See Project.SetTraceTiming on
page 238 for further information.
Edit.Sys- Specifies the maximum amount of instructions that
Var(VAR_TRACE_MAX | NST| Ozone can process and store during a streaming 1M
NT) trace session.
Edit.Sys- Specifies weather the target is to output (and J-
Var(VAR_TRACE_TI MES- Link/Ozone is to process) PC timestamps multi- 1
TAMPS_ENABLED) plexed into the trace data stream.
CPU frequency in Hz. Ozone uses this variable to
Edit.Sys- convert instruction timestamps from CPU cycle 100kHz
Var(VAR_TRACE_CORE_CLOCKdunt to time format (see VAR_TRACE_TI MESTAM
PS_ENABLED).
Note

When instruction timestamps are not required, the option should be disabled to en-
hance the overall tracing performance.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

160 CHAPTER 5 Setting Up The Instruction Cache

5.14 Setting Up The Instruction Cache

All instruction-trace and disassembly related features of Ozone require the prior initialization
of the instruction cache with the program code to be debugged. In case a download is
performed on debug session start, Ozone automatically initializes the instruction cache with
the downloaded bytes. In situations where the instruction cache is not fully initialized from
the downloaded bytes, e.g. when:

e program code areas are initialized at runtime (e.g. RAM-Debug)
e no program file is specified
e attaching to a running program

the instruction cache has to be initialized manually via command Debug.ReadIntolnstCache
(see Debug.ReadIntolnstCache on page 231). When the instruction cache is not initial-
ized, Ozone will display a warning message indicating that debugging information will be
inaccurate.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

161 CHAPTER 5 Selective Tracing

5.15 Selective Tracing
5.15.1 Overview

Many ARM-Cortex targets allow trace data output to be limited to a set of user-defined
program address ranges. When selective tracing is active, the target’s trace buffer is only
filled with trace data that matches the configured constraints. This makes selective tracing
particularly valuable on hardware setups with limited trace buffer size and no streaming
trace capability.

5.15.2 Requirements

It is to a high degree target dependent if selective tracing is supported and to what extent.
A generic requirements overview cannot be given. Instead, refer to your MCU model’s user
manual or contact the manufacturer when unsure about the capabilities of your target.

Upon target connection, J-Link/J-Trace automatically detects if the target supports selective
tracing and enables the debugger to use the feature when available.

5.15.3 Tracepoints

Selective tracing is implemented in Ozone using start and stop-

. X) 0 165 } while
type tracepoints. Tracepoints can be toggled on program instruc- . ;e TestFum
tions and source lines just like ordinary breakpoints. Each matching 0 167 & TestFun
pair of start and stop tracepoints marks an address range whose p o0 162F TestFum
instructions are included in the target’s trace output. All instruction 5 169 [# _TestFum
fetches occurring outside of tracepoint-configured address ranges 5 170 E _TestFun
will not generate trace data. 5 171 _TestFun;

m 5 17z [+ _TestFuau
. .. o 173 [+ Test Furu
Tracepoint Imprecision @0 17aE)

An MCU possibly commands its tracepoints hardware unit asyn-

chronously to its instruction execution unit. This means that trace data capture may be
started and stopped a few cycles after the affiliated instruction has been fetched for exe-
cution.

5.15.4 Scope

All of the features summarized in Trace Features Overview on page 158 are affected by
selective tracing.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

162 CHAPTER 5 Advanced Program Analysis And Optimization
Hints

5.16 Advanced Program Analysis And Optimization
Hints

This section describes use-cases of advanced program analysis using the (streaming) in-
struction trace and code profiling capabilities of Ozone. For code profiling hardware require-
ments, see Hardware Requirements on page 112.

5.16.1 Program Performance Optimization

5.16.1.1 Scenario

The user wants to optimize the runtime performance of the debuggee.

To get an overview of the program functions in which most CPU time is spent, it is usually
good to start by looking at the Code Profile Window and to sort its functions list according
to CPU load:

Code Profile =
Funickion IS::uurce Coverage IInst. Caverage IRun Count |L|:|a|:| S Iil

035 _Idle 100.0% (242) 100.0% (3/3) ZE9 395.73% (1115888169
SysTick_Handler EO.0% (376) ?7.6% (BESE7) 13 367 0.07% (7354E53)
vTracestareEventl zl. 4% (3714 Sl.1% (45/88) 14 207 0.05% (701041,
CS_TICK_Handle Nik BZ.6% (30757) 13 387]

S0a% (428 280) LI

Filtering Functions

In this example, the program spends 99% of its CPU time in the idle loop, which is not
relevant for optimizations. To get a clear picture about where the rest of the CPU time
is spent, the idle loop can be filtered from the code profile statistic. This can be done by
selecting function OS_I dl e and clicking on the context menu entry “Exclude”.

Filtering Instructions

A compiler may furthermore emit code alignment instructions (NOP’s) that are likewise
not relevant for code optimization. NOP Instructions can be filtered from the code profile
statistic by clicking on context menu entry “Exclude NOP Instructions” or programmatically
via command Coverage.ExcludeNOPs (see Coverage.ExcludeNOPs on page 245).

Code Profile =
Funickion IS::uurce Coverage IInst Caverage IRun Count |L|:|a|:| S Iﬂ

SysTick_Handler EO.0% (376) _B% (BEESE7) 13 367 4. ZZ% (7354E3)
vTracestareEventl zl. 4% (3714 Sl.1% (45/88) 14 207 23.09% (701041,
CS_TICK_Handle Nik BZ.6% (30757) 13367 14.11% (428 Z20)
JLIMKMEM F'rcu:ess I6.8% (7719 3E.3% (2076E) 13 367 7.92% (240 610) LI

After filtering, the Code Profile Window shows where the application spends the remaining
CPU time. Other functions which affect the CPU load but cannot be optimized any further
can be filtered accordingly in order to find remaining functions worth optimizing. In this
example, a quarter of the remaining CPU time is spend in function vTraceStoreEventl. Let’s
now assume the user wants to optimize the runtime of this function. By double-clicking on
the function, the function is displayed within the Source Viewer.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

163

CHAPTER 5

Evaluating Execution Counters

The Source Viewer’s execution counters indi-
cate that an assertion macro within function
vTraceStoreEventl has been executed a signif-
icant amount of times. The Source Viewer also
indicates that the last 3 instructions of the as-
sertion macro have never been executed. This
means that the assertion was always true when
it was evaluated.

Deriving Improvement Concepts

At this point, the user could think about remov-
ing the assertion or ensuring that the assertion is
only evaluated when the program is run in debug
mode.

Impact Estimation

Advanced Program Analysis And Optimization

693
594
11 966 535 [+
3=l
537
11 266 =35 [
11 266
11 266
11 266

593
11 266 700 [+

Hints

F* Btore an event with
wold vwITraceStoreEventl |

i

TRACE ALLOC CRITICA

PEF_ASZSERT (eventID =<

O2001FE:
O200LFEA
OS001FEE
OS001F&0
O2001F&E
O2001F&E

S2FE
FLEZE
DE0z
200l
FOOOF
EOEE

TRACE_ENTEE_CRITICAL

To get an idea of the impact of the optimization, the execution counters may provide a first
idea. In general, optimizing source lines which are executed more often can result in higher
optimization. If the function code is fully sequential, i.e. if there are no loops or branches

in the code, the impact can be estimated exactly.

Code Profile Status Information

The status information of the Code Profile Window displays the target’s actual instruction
execution frequency. An instructions per second value that is significantly below the target’s
core frequency may indicate that the target is thwarted by an excessive hardware IRQ load.

| Code Profile Instruction Count: 136 094 231 in 541,95 (251 142[<) | Connected @ 2 MHz

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

164 CHAPTER 5 Messages And Notifications

5.17 Messages And Notifications

This section provides a brief description of Ozone’s application message and user notification
system.
5.17.1 Message Format

The format of Ozone application messages is:
<type>(<code>): <message>

where <type> is either error, warning or info and <code> is a unique message number.

5.17.2 Message Codes

Ozone partitions message numbers into groups, depending on the origin and type of the
message. As an example, warning messages emitted from the ELF parser start at code
1000.

Section Errors and Warnings on page 196 lists all user-visible application exceptions by
their code and provides an overview of the cause and possible solutions to each exception.

5.17.3 Logging Sinks

Application messages are output to any of the following destinations:

e Ozone’s Console Window
e Debug Console
e Application Lodfile

Application messages printed to the Console Window have the highest priority and become
immediately noticeable to the user.

The allocation of message types to logging sinks is depicted in the table below.

Message Type Ozone Console Debug Console Logfile
Error X X
Warning (important) X X
Info (important) X X
Warning X X
Info X X

5.17.4 Debug Console

When Ozone is started with command line argument -debug, a debug console will open
next to the Main Window. The debug console displays all application messages of lower
significance that would otherwise only be visible to the software developer.

5.17.5 Application Logfile

The global logfile storing all application messages is disabled per default. It can be enabled
via command line argument —/ogfile <path> (see Command Line Arguments on page 193).

5.17.6 Other Logfiles

Messages output to the Console Window or Terminal Window can additionally be logged to
a separate logfile (see Project.SetConsoleLogFile on page 242 and Project.SetTerminal-
LogFile on page 243).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

165 CHAPTER 5 Other Debugging Activities

5.18 Other Debugging Activities

This section describes all debugging activities that were not covered by the previous sec-
tions.

5.18.1 Finding Text Occurrences

Text patterns within source code documents may be located using the Find In Files Dialog
(see Find In Files Dialog on page 57). This dialog supports regular expressions and standard
text search options.

When a text pattern is to be found within the active document, users may furthermore
resort to the convenient Quick Find Widget (see Quick Find Widget on page 70). The
quick find widget can be used alternatively to locate a particular function, global variable
or source code file of the debuggee.

5.18.2 Saving And Loading Memory

Ozone allows users to store target memory content to a binary data file and vice versa.

Memory-To-File

Target memory blocks can be saved (dumped) to a binary data file via command Tar-
get.SaveMemory (see Target.SaveMemory on page 249) or via the Save Memory Dialog
(see Generic Memory Dialog on page 106).

File-To-Memory

File contents can be downloaded to target memory via command Target.LoadMemory (see
Target.LoadMemory on page 250) or via the Load Memory Dialog (see Generic Memory
Dialog on page 106).

5.18.3 Relocating Symbols

To allow the debugging of runtime-relocated programs such as bootloaders, Ozone pro-
vides command Project.RelocateSymbols (see Project.RelocateSymbols on page 242).
This command shifts the absolute addresses of a set of program symbols by a constant
offset. It can thus be used to realign symbol addresses to a modified program base address.

5.18.4 Terminal Input

The debuggee (debuggee) can request user input via the Semihosting or RTT data IO tech-
niques (see Terminal IO on page 153). This common debugging technique allows users to
manipulate the program state at application-defined execution points and to observe the
resulting runtime behavior. Ozone provides the Terminal Prompt for answering user input
requests (see Terminal Prompt on page 126).

5.18.5 Closing the Debug Session

The debug session can be closed via command Debug.Stop (see Debug.Stop on page 226).
The action can be executed from the Debug Menu or by pressing the hotkey Shift-F5.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

Chapter 6

Scripting Interface

This chapter describes Ozone’s scripting interface. The scripting interface allows users to:
e reprogram key debugging operations

incoorporate a bootloader into Ozone’s startup sequence

extend Ozone’s target application insight via RTOS awareness plugins

amongst other applications.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

CHAPTER 6 Project Script

6.1 Project Script

Ozone project files (*.jdebug) contain user-implemented script functions that the debugger
executes upon entry of defined events or debug operations. By implementing script func-
tions, users are able to reprogram key operations within Ozone such as the hardware reset
sequence that puts the target into its initial state.

6.1.1 Script Language

Project files are written in a simplified C language that supports most C language constructs
such as functions and control structures. Ozone currently requires all script code to be con-
tained within functions. Statements and declarations occurring outside of function bodies
are invalid syntax. However, global constants can be defined using command Script.De-
fineConst (see Script.DefineConst on page 226).

6.1.2 Script Functions Overview

Project file script functions belong to three different categories: event handler functions,
process replacement functions and user functions. Each script function may contain C code
that configures the debugger in some way or replaces a default operation of the debugging
workflow. The different function categories are described below.

6.1.3 Event Handler Functions

Ozone defines a set of 11 event handler functions that the debugger executes upon entry
of defined debugging events. The Table below lists the event handler functions and their
associated events. The event handler function OnPr oj ect Load is obligatory, i.e. it must be

present in the project file.

Event Handler Function

Description

voi d

OnProj ect Load() ;

Executed when the project file is opened.

voi d

Bef or eTar get Reset () ;

Executed before the target is reset.

voi d

Aft er Tar get Reset () ;

Executed after the target was reset.

voi d

Bef or eTar get Downl oad() ;

Executed before the program file is down-
loaded.

voi d

Af t er Tar get Downl oad() ;

Executed after the program file was down-
loaded.

voi d

Bef or eTar get Connect () ;

Executed before a J-Link connection to the tar-
get is established.

voi d

Af t er Tar get Connect () ;

Executed after a J-Link connection to the target
was established.

voi d

Bef or eTar get Di sconnect () ;

Executed before the debugger disconnects from
the target.

voi d

Af t er Tar get Di sconnect () ;

Executed after the debugger disconnected from
the target.

voi d

AfterTargetHalt();

Executed after the target processor was halted.

voi d

Bef or eTar get Resune() ;

Executed before the target processor is re-
sumed.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

168

CHAPTER 6 Project Script

Example Event Handler Implementation

Illustrated below is an example implementation of the event handler function Af t er Tar ge-
t Reset . In this example, a peripheral register at memory address 0x40004002 is initialized
after the target was reset.

/***
Af t er Tar get Reset

Functi on description
Executed after the target was reset.

L I

*
R IRk Ik bk S bk O 2k R S Ik I R Sk I S I kR Sk kS I I R Rk S bk S kO S
*/
voi d AfterTarget Reset (void) {
Target. WiteU32(0x40004002, OxFF);

}

6.1.4 User Functions

Users are free to add custom functions to the project file. These “helper” or user functions
are not called by the debugger directly; instead, user functions need to be called from other
script functions.

6.1.5 Process Replacement Functions

6.1.

6.1.

Ozone defines 4 script functions that can be implemented within the project file to replace
the default implementations of certain debugging operations. The behavior that is expected
from process replacement functions is described in this section.

Process Replacement Function Description
voi d DebugStart(); Replaces the default debug session startup routine.
voi d Target Reset (); Replaces the default target hardware reset routine.
voi d Tar get Connect (); Replaces the default target connection routine.
voi d Tar get Downl oad() ; Replaces the default program download routine.

6 Debugger API Functions

In the context of project script files, any command that has a text command is referred to
as an API function (see Action Tables on page 35). API functions can be used within project
script files to execute specific functions of the debugger and to exchange data with the
debugger. In short, API functions resemble the debugger’s programming interface (or API).

7 Process Replacement Functions

Ozone defines 4 script functions that can be implemented within the project file to replace
the default implementations of certain debugging operations. The behavior that is expected
from process replacement functions is described in this section.

Process Replacement Function Description
voi d DebugStart(); Replaces the default debug session startup routine.
voi d Target Reset(); Replaces the default target hardware reset routine.
voi d Tar get Connect (); Replaces the default target connection routine.
voi d Tar get Downl oad() ; Replaces the default program download routine.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

169 CHAPTER 6 Project Script

6.1.7.1 DebugStart

When the script function DebugSt art is present in the project file, the default startup se-
quence of the debug session is replaced with the operation defined by the script function.

Startup Sequence

The table below lists the different phases of Ozone’s default debug session startup sequence
(see Download & Reset Program on page 139). The last column of the table indicates the
process replacement function that can be implemented to replace a particular phase of the
startup sequence. The complete startup sequence can be replaced by implementing the
script function DebugSt art .

Process Replacement

Startup Phase Description Function

A software connection to the target is
established via J-Link.

Pending (data) breakpoints that were
set in offline mode are applied.

Phase 1: Connect Tar get Connect

Phase 2: Breakpoints

A hardware reset of the target is per-

Phase 3: Reset
formed.

Tar get Reset

The debuggee is downloaded to target
memory.

Phase 4: Download Tar get Downl oad

The initial program operation is per-
Phase 5: Finish formed (see Initial Program Operation
on page 139).

Flow Chart

Appendix Startup Sequence Flow Chart on page 195 provides a graphical flowchart of
the startup sequence. Most notably, the flowchart illustrates at what points during the
startup sequence certain event handler functions are called (see Event Handler Functions
on page 167).

Breakpoint Phase

Phase 2 (Breakpoints) of the default startup sequence is always executed implicitly after
the connection to the target was established.

Writing a Custom Startup Routine

A custom startup routine that performs all phases of the default sequence but the initial
program operation is displayed below.

/**

*

* DebugSt ar t

*

* Function description

* Cust om debug session startup routine that skips phase 5

*

EE IR S I b b R I I I I b I S I R b I I I I b b R I I I I I S b I I I I R b b b I I
*/

voi d DebugStart (void) {
Exec. Connect () ;
Exec. Reset () ;
Exec. Downl oad(“c:/exanpl es/ kei | / st n82f 103/ bl i nky. axf”);

}

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

170 CHAPTER 6 Project Script

6.1.7.2 TargetConnect
When the script function Tar get Connect is present in the project file, the debugger’s default
target connection behavior is replaced with the operation defined by the script function.

6.1.7.3 TargetDownload

When the script function Tar get Downl oad is present in the project file, the debugger’s
default program download behavior is replaced with the operation defined by the script
function.

Writing a Multi-lmage Download Routine

An application that requires the implementation of a custom download routine is when
one or multiple additional program images (or data files) need to be downloaded to target
memory along with the debuggee. A corresponding implementation of the script function
Tar get Downl oad is illustrated below.

/***

*

* Tar get Downl oad

*

* Function description

* Downl oads an additional programinmge to target nenory

*

EE I I S I R I I S I I b I S I I I b I I I I I I I I I I I 2 I I S b I I I I I S S b I I
*/

voi d Tar get Downl oad(voi d) {
Util.Log("“Downl oadi ng Program”);

/* 1. Downl oad the debuggee */
Exec. Downl oad() ;

/* 2. Downl oad the additional programimge */
Tar get . LoadMenor y(“ C. / Addi ti onal Progr anDat a. hex”, 0x20000400) ;

}

Using command “Exec.Download” to perform the download guarantees that there will be
no script function recursion (see Download Behavior Comparison on page 151).

6.1.7.4 TargetReset

When the script function tt{TargetReset} is defined within the project file, the debugger’s
default target hardware reset operation is replaced with the operation defined by the script
function.

J-Link Reset Routine

Ozone’s default hardware reset routine is based on the J-Link firmware routine “JLI NKAR-
M Reset ”. Please refer to the J-Link User Guide for details on this routine and its tar-
get-dependent behavior.

Writing a Reset Routine for RAM Debug

A typical example where the J-Link hardware reset routine must be replaced with a custom
reset routine is when the debuggee is downloaded to a memory address other than zero,
for example the RAM base address.

Problem

The standard reset routine of the firmware assumes that the debuggee’s vector table is
located at address 0 (Cortex-M) or that the initial PC is 0 (Cortex-A/R, Legacy ARM). As this
is not true for RAM debug, the reset routine must be replaced with a custom implementation
that initializes the PC and SP registers to correct values.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-sdk.html

171 CHAPTER 6 Project Script

Solution

A custom reset routine for RAM debug typically first executes the default J-Link hardware
reset routine. This ensures that tasks such as pulling the target’s reset pin and halting the
processor are performed. Next, a custom reset routine needs to initialize the PC and SP
registers so that the target is ready to execute the first program instruction.

Example

The figure below displays the typical implementation of a custom hardware reset routine
for RAM debug on a Cortex-M target. This implementation is included in all project files
generated by the Project Wizard that are set up for a Cortex-M target device.

/~k***~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k************************
Tar get Reset

Functi on description
Resets a program downl oaded to a Cortex-Mtarget’'s RAM section

* % X F

*
EE I I S I I R I I S I I b I S I I b I I I I R I I R I I I I I S b I I b I I b b b I I
*/
voi d Target Reset (void) {
unsi gned int SP;
unsi gned int PC;
unsi gned int ProgramAddr;

Util.Log(“Perform ng custom hardware reset for RAM debug.”);
Pr ogramAddr = 0x20000000;

/* 1. Performdefault hardware reset operation */
Exec. Reset () ;

[* 2. Initialize SP */
SP = Target. ReadU32(Pr ogr amAddr) ;
Tar get . Set Reg(“SP", SP);

/* 3. Initialize PC*/
PC = Target. ReadU32(ProgramAddr + 4);
Tar get . Set Reg(“PC", PC);

6.1.8 Executing Script Functions

Ozone provides command Script.Exec (see Script.Exec on page 225) that allows users
to execute individual project script functions from the Command Prompt (see Command
Prompt on page 82).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

172 CHAPTER 6 RTOS Awareness Plugin

6.2 RTOS Awareness Plugin

By implementing an RTOS-awareness plugin, users are able to add a task list and other
RTOS-specific debug information to the RTOS Window (see RTOS Window on page 117).
An RTOS plugin may furthermore enable Ozone to show the execution context of any sus-
pended or interrupted task within the Registers, Call Stack and Local Data windows.

6.2.1 Script Language

RTOS awareness plugins are written in JavaScript. All of JavaScript’s basic language con-
structs are supported. Ozone poses a single requirement on RTOS plugins which is that all
script code must be contained within functions.

6.2.2 Loading the Plugin

Command Project.SetOSPlugin loads an RTOS plugin. When this command is added to
project file function OnProj ect Load, the plugin will be loaded each time the project is
opened (see Project.SetOSPlugin on page 235).

When an RTOS plugin is loaded, an entry for the RTOS Window will be added to the debug-
gers View Menu (see View Menu on page 38).

6.2.3 Script Functions Overview

Ozone defines the prototypes of 6 script functions that serve specific purposes and that are
executed upon entry of specific debugging events.

Function Description Executed When
init initializes the RTOS Window program file load
update updates the RTOS Window program execution halt
getregs returns the register set of a task task context activation
getname returns the name of a task program execution halt
getOSName returns the name of the RTOS program file load

returns the base address of a task’s thread

gettls local storage program execution halt
getContex- returns information about all RTOS kernel)
tSwitchAddrs functions that perform a task switch program file load

The implementation of function update is obligatory while all other functions may be omitted
from a plugin implementation.

Next to the predefined script functions, users are free to add their own functions to RTOS
scripts in order to structure the code.

6.2.4 Debugger API

Ozone defines a set of functions that can be called from RTOS scripts to communicate and
exchange data with the debugger. These functions are implemented as methods of Ozone’s
JavaScript API classes:

Class Description
Debug Provides methods that query information from the debugger.
Threads Provides methods that control and edit the RTOS Window.

Targetlnterface | Provides methods that read or write target memory and registers.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

173 CHAPTER 6 RTOS Awareness Plugin

An example-based description of the API classes can be found in section Writing the
RTOS Plugin on page 173. A formal description is given by section JavaScript Classes on
page 269.

6.2.5 Writing the RTOS Plugin

The examples presented in this section assume that the debuggee defines a recursive task
control block structure similar to the following type definition:

TCB {
U32* pStack; /1 menory address of the task stack
U32* pTLS; /1 base address of the task’s thread | ocal storage
TCB* pNext /1 menory address of the next TCB
s
6.2.5.1 init

An RTOS plugin implementation typically starts with script function i nit — this function
is expected to set up all RTOS informational views of the RTOS Window so that RTOS
information can be quickly updated once the debug session is running.

/***

init

* Ok ¥ X F

Functi on description

Initializes all RTCS informational views of the RTOS W ndow.
*

EE IR Sk kS Rk kb S S I Sk Rk S S Sk S bk S R R Ik S S R R S Sk S
*/
function init(void)
{
/1 Init the task table
Thr eads. newqueue(“ Tasks”) ;
Thr eads. set Col ums(*“Nane”, “Priority”, “Status”, “Timeout”);
Thr eads. set Sort ByNunber (“Priority”);
Thr eads. set Col or (“ Status”, “Ready”, “Executing”, “Waiting”);

/1 Init the tinmers table

Thr eads. newqueue(“ Ti mers”);

Thr eads. set Col ums(“ Nane”, “Priority”, “Interval”);
Thr eads. set Sort ByNunber (“Priority”);

Thr eads. set Sort ByNunber (“I nterval ") ;

}

Thr eads. newgueue appends a new table to the RTOS Window and activates it. When the
table already exists, it is simply activated.

Thr eads. set Col unms sets the columns of the active table. Note that all methods of the
Thr eads class that do not specify a table name act upon the active table.

Thr eads. set Sort ByNunber specifies that a particular column of the active table should be
sorted numerically rather than alphabetically.

Thr eads. set Col or configures the task list highlighting scheme. The tasks with states
“Ready”, “Executing” and “Waiting” will be highlighted in light green, green and light red,
respectively.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

174 CHAPTER 6 RTOS Awareness Plugin

6.2.5.2 update

An implementation of updat e is expected to perform an all-table update of the RTOS Win-
dow.

/***
updat e

Functi on description
Updates all RTOS informational views of the RTOS W ndow.

L I

*

EE IRk Ik kS bk O kR R S I I Ik O Sk I S I kI kS kS S R Rk I S kS O S
*/

functi on update(void)

{
var aRegs = [0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16] ;

/1 clear all tables
Thr eads. cl ear () ;

/1 fill the task table

if (Threads.shown(“Tasks”)) {
Thr eads. newqueue(“ Tasks”) ;
Thr eads. add(“ Task1”, “0”, “Executing”, “1000”, 0x20003000);
Thr eads. add(“ Task2”, “1", “Waiting”, “2000”, aRegs);

}

[l fill the timers table
if (Threads.shown(“Timers”)) {
Thr eads. newqueue(“Ti mers”);
Thr eads. add(“ Ti mer1”, “1000”, “2000");

}
}

Thr eads. cl ear removes all rows from all tables of the RTOS Window. Table columns remain
unchanged.

Thr eads. shown tests if a RTOS Window table is currently visible. The methods main use is
to allow a faster update of the RTOS Window.

Thr eads. newqueue activates the table named “Tasks” so that the following call to Thr ead-
s. add will append a data row to this table.

The last parameter of method Thr eads. add is either:

an integer value that identifies the task, usually the address of the task control block.
an unsigned integer array containing the register values of the task. The array must be
sorted according to the logical indexes of the registers as defined by the ELF-DWARF
ABI.

The first option should be preferred since it defers the readout of the task registers until
the task is activated within the RTOS Window (see method get r egs).

The special task identifier value undefined indicates to the debugger that the task registers
are the current CPU registers. In this case, the debugger does not need to execute method
getregs.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

175 CHAPTER 6 RTOS Awareness Plugin

6.2.5.3 (getregs
An implementation of getr egs is expected to return the (saved) register set of a task.

/***

getregs

Functi on description
Returns the register set of a task.
For ARM cores, this function is expected to return the val ues
of registers RO to R15 and PSR

Par anet er s
hTask: integer number identifying the task.
Identical to the [ast parameter supplied to nethod Threads. add.
For convenience, this should be the address of the TCB.

Ret urn Val ues
An array of unsigned integers containing the task’s register val ues.
The array nust be sorted according to the |ogical indexes of the regs.
The | ogi cal register indexing schene is defined by the ELF- DWARF ABI .

L I S T I B R S

*
EE IRk Ik kS bk O I R S I I Ik O Sk S S S R I Sk Sk S S I S R Rk I S kS I S
*/
function getregs(hTask)
var i;
var tcb;
var aRegs = new Array(16);

/1 get the task’s TCB data structure
tcb = Debug. eval uate(“*(TCB*)” + hTask);

if (tcb == undefined) {
return [];
}
/1 copy the registers stored on the task stack to the output array
for (i =0; i < 16; i++) {
aRegs[i] = Targetlnterface. peekWord(tcb. pStack + i * 4);

return aRegs;

}

The method Debug. eval uat e instructs Ozone to evaluate a C-style symbol expression and
return the result as a JavaScript object (see Working With Expressions on page 154).

In the example above, an expression including a type cast and a pointer dereference is
employed to return a JavaScript object that mirrors the TCB type defined by the debuggee.
The member tree of the returned JavaScript object is fully initialized with the exception
that pointer members cannot be dereferenced.

The return value of Debug. eval uat e can be compared to value undefined in order to test
if the evaluation succeeded.

Method Tar get | nt er f ace. peekWor d instructs the debugger to read and return a word from
target memory. In the example above, peekWrd is used to read a register value of the
task stack.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

176 CHAPTER 6 RTOS Awareness Plugin

6.2.5.4 getname
Function get nane is expected to return the name of a task.
/***

get name

Function description
Returns the name of a task.

Par anet er s
hTask: see the description of method getregs.

L G

*

EE IRk Ik kS bk O kR R S I I Ik O Sk I S I kI kS kS S R Rk I S kS O S
*/
function getname(hTask)

{

var tcb;
tcb = Debug. evaluate(“*(TCB*)” + hTask);
return tch. sNane;

6.2.5.5 getOSName

Function get OSNane is expected to return the name of the RTOS. The name will be used
within Ozone’s view menu, amongst other applications.

function get OSNane() {
return “enbCs’;

}

6.2.5.6 gettls

Function gettl s is expected to return the base address of the memory block containing
the task’s thread local storage.

/***
gettls

Functi on description
Returns a pointer to the thread |ocal storage of a task.

Par anet er s
hTask: see the description of method getregs.

L S

*
EE IRk Ik kS bk O kR R S I I Ik O Sk I S I kI kS kS S R Rk I S kS O S
*/
function gettl s(hTask)
{
var tcb;
tcb = Debug. evaluate(“*(TCB*)” + hTask);
return tch. pTLS;
}

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

177 CHAPTER 6 RTOS Awareness Plugin

6.2.5.7 getContextSwitchAddrs

Function get Cont ext Swi t chAddr s is expected to return the base addresses of all functions
and instructions that complete a task switch when executed.

/***
get Cont ext Swi t chAddr s
Functi on description

Returns the base addresses of all functions and instructions
that conplete a task sw tch when execut ed.

L S I I 3

*

khkkhkkhkkhkhhkhkhhhhhhhhhhhdhhhhhhdhhhkhhhhhhhhhhhdhhhdhhdhhdhhddhddxhrdxdrdxdrrd*x*x*%

*/
function get Cont ext Swi t chAddr s(voi d)
{

var aAddrs = new Array(1);

var Addr;

Addr = Debug. eval uat e(“ & TaskSwi t chCont ext”);

if (Addr != undefined) {
aAddrs[0] = Addr;
return aAddrs;

} else {
return [];

6.2.5.8 Iterating the Task List

The next example demonstrates an advanced implementation of method updat e which
employs Debug. eval uat e to iteratively update the task list.

/***
updat e

Function description
Updates the RTOS W ndow

L I

*

R IRk Ik kS Sk O Ik R I S kI Sk S S S S R kS kS S I Rk I S kS
*/

functi on update(void)

{
var pTCB;
var tchb;
var count;

pTCB = Debug. eval uat e(“OS_G obal . pCurrent Task”) ;
count = 0;

while ((pTCB != undefined) && (pTCB = 0) && (count < MAX_TASK COUNT))
tcb = Debug. eval uate(“*(TCB*)” + pTCB);
Thr eads. add(tcb. nane, tch.priority, tcb.status, tcb.tineout, pTCB);

count ++;
pTCB = tch. pNext;

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

178 CHAPTER 6 RTOS Awareness Plugin

6.2.5.9 Computing The Stack Usage

A common task when implementing an RTOS plugin is to compute the (maximum) stack
usage of a particular task. Often times, this information is not provided by the RTOS and
must be computed via a data analysis of the task stack. To serve this purpose, Ozone pro-
vides the methods TargetInterface.findByte and Targetlnterface.findNotByte. Both meth-
ods search through a target memory block for the first byte matching, respectively not
matching, a comparison value. An example implementation is given below.

/***
get MaxSt ackUsage

Functi on description
Returns the maxi num stack usage of a task.

L G

Par aneters

hTask: address of the task control bl ock.
*

EE IRk Ik kS Sk S kR R I S Ik I Ik I Sk I S S R R I S Sk Ik S S kR Rk I I Sk S
*/
function get MaxSt ackUsage(hTask)

var tcb;
var i ndex;

tcb = Debug. eval uate(“*(TCB*)” + hTask);

if (tch.stackSize > STACK CHECK LIMT) {
return undefined; // skip analysis if stack is too big

}
i ndex = TargetlInterface.findNotByte(tch.pStack, tch.stackSize, FILL_VAL);

return tch. stackSi ze - index;

}

where STACK _CHECK LI M T limits stack analysis to a preset byte length and FI LL_VAL is
the byte value used to initialize the task stack when the stack is allocated.

6.2.5.10 Convenience Methods

The methods Thr eads. set Col uims2 and Thr eads. add2 are convenience functions that take
as first parameter the name of the table to be altered. Both methods implicitly execute
Thr eads. newqueue with the table name parameter as a first step. Next, both methods per-
form exactly the same operations as their Thr eads. set Col uims and Thr eads. add coun-
terparts. There is one exception in that Thr eads. add2 misses the trailing parameter of
Thr eads. add, i.e. it cannot be used to specify the register set of a task.

6.2.6 Compatibility with Embedded Studio

The JavaScript API of Ozone is a subset of the API employed by Embedded Studio. All
methods necessary to program an RTOS plugin have been adopted. It is, therefore, possible
to write an RTOS plugin once and use it within both software products.

6.2.7 DLL Plugins

Prior versions of the RTOS plugin interface were based on a dynamic link library API written
in C. The DLL plugin interface remains functional and its documentation can be obtained
from SEGGER upon request.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

179 CHAPTER 6 Incorporating a Bootloader into Ozone's Startup
Sequence

6.3 Incorporating a Bootloader into Ozone's Startup
Sequence

An important use case of Ozone’s scripting system is to configure the debug session startup
sequence in a manner such that a hardware initialization program (bootloader) is executed
before download of the debuggee. This section explains how users are expected to write an
Ozone script that serves this particular purpose. The following example is written for the
Cortex-M architecture but the demonstrated concepts are universally valid.

OnProjectLoad

/***

*

OnPr oj ect Load

Function description
Project load routine. Required.

*
*
*
*

*

EE I I S I b R I I S I I b S I I I b I I I I R R I R I I I S I I S b I I I I I b b b I I
*/
voi d OnProj ectLoad (void)

Fi |l e. Open(“debuggee. el f”); // open nmin image

}
The script’s entry point function loads the debuggee instead of the bootloader. This ensures

that the debug windows that show static program information are initialized even when the
debug session was not yet started.

TargetDownload

/***

Tar get Downl oad

Function description
Downl oads the bootl oader instead of the nain image.

L I

*

EE IR R R R I R I R R R I R R R S O R S I R I R R R R I S R R S O

*/
voi d Tar get Downl oad (voi d)
{
Exec. Downl oad(“ Boot | oader. hex”);
}

Script function Tar get Downl oad instructs Ozone to download the bootloader instead of the
main image when the debug session is started. Note that command Exec.Download is used
to download the bootloader. The reason for this is that this command does not trigger any
other script functions when executed (see Download Behavior Comparison on page 151).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

180 CHAPTER 6 Incorporating a Bootloader into Ozone's Startup
Sequence

AfterTargetDownload

/***

*

Af t er Tar get Downl oad

*
*
* Function description

* Initializes PC and SP for either bootl oader or debuggee execution
*

EE IRk Ik kS bk O 2 R S Ik O Ik Sk I S S S R Sk Sk Sk S S R Rk I S O Sk S Sk O
*/

voi d AfterTarget Downl oad (voi d)

{
unsi gned i nt Addr;

i f (TargetlsHaltedAtBootl| oader End()) {

Addr = <mai n_i mage_downl oad_address>; // init regs for debuggee exec.
} else {
Addr = <boot | oader_downl oad_address>; // init regs for bootl oader exec.

}
Tar get . Set Reg(“ SP”, Target.ReadU32(Addr));

Tar get . Set Reg(“ PC’, Target.ReadU32(Addr + 4));
}

Script function Af t er Tar get Downl oad instructs Ozone to initialize the PC and SP registers
to the required values for either bootloader or main image execution, depending on which
file was downloaded.

AfterTargetHalt

/***

*

AfterTarget Hal t

* Function description
* Checks if the bootl oader finished execution and if so, |oads the debuggee

IR R R R E R RS EREEEREEEEEEEEEEREEEEREEEREEEREEEREEEEREEEEEEEEEEREEE R EEEE SRR EEEEE RS

*/
void AfterTargetHalt (void)
{
i f (TargetlsHaltedAt Boot| oader End())
{
Fil e. Load("“debuggee. el f”, 0);
}
}

The key to incorporating a bootloader into Ozone’s debug session startup sequence is to
detect the point in time when the bootloader has finished execution. The expected way to
do this is to have the bootloader run into a software breakpoint instruction at the end of
its execution. Once the bootloader hits this breakpoint, Ozone senses that the target has
halted and executes script function Af t er Tar get Hal t . Helper function Tar get | sHal t edAt -
Boot | oader End tests if the current PC is identical to the PC of the software breakpoint. If
the test succeeds, the download of the main image is performed. A key aspect here is that
command “File.Load” is used to perform the download of the main image. This way, the
target is not hardware-reset prior to the download (which would possibly revert changes
performed by the bootloader) and script function Af t er Tar get Downl oad is executed after
the download. For an overview of the behavioral differences of Ozone’s downloading user
actions, please refer to section Download Behavior Comparison on page 151.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

Chapter 7

Appendix

The Appendix provides quick references and formal listings about different types of user
information, including Ozone API commands, system variables and application error mes-
sages.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

182 CHAPTER 7 Value Descriptors

7.1 Value Descriptors

This section describes how certain objects such as fonts and source code locations are
specified textually to be used as arguments for user actions and script functions.

7.1.1 Frequency Descriptor

Frequency parameters need to be specified in any of the following ways:

103000
103000 Hz

103.5 kHz (or 103.5k)
0.13 MHz (or 0.13M)
1.1 GHz (or 1.1G)

A frequency parameter without a dimension is interpreted as a Hz value. The permitted
dimensions to be used with frequency descriptors are Hz, kHz, MHz and GHz. The capital-
ization of the dimension is irrelevant. The dimensions can also be specified using the letters
h, k, M and G. The decimal point can also be specified as a comma.

7.1.2 Source Code Location Descriptor
A source code location descriptor defines a character position within a source code docu-
ment. It has the following format:

“File name: line number: [column number]”

Thus, a valid source location descriptor might be “"main.c: 100: 1”.

File Name

The file name of the source file (e.g. “main.c”) or its complete file path (e.g."c:/exam-
ples/blinky/source/main.c”).

Line Number

The line number of the source code location.

Column Number

The column number of the source code location. This parameter can be omitted in situations
where it suffices to specify a source code line.
7.1.3 Color Descriptor

Color parameters are specified in any of the following ways:

e steel-blue (SVG color keyword)
e #RRGGBB (hexadecimal triple)

Thus, any SVG color keyword name is a valid color descriptor. In addition, a color can be
blended manually by specifying three hexadecimal values for the red, green and blue color
components.

7.1.4 Font Descriptor

Font parameters must be specified in the following format (please note the comma sepa-
ration):

“Font Family, Point Size [pt], Font Style”

Thus, a valid font descriptor might be “Arial, 12pt, bold”.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

183

CHAPTER 7 Value Descriptors

Font Family

Ozone supports a wide variety of font families, including common families such as Arial,
Times New Roman, and Courier New. When using font descriptors, the family hame must
be capitalized correctly.

Point Size

The point size attribute specifies the point size of the font and must be followed by the
measurement unit. Currently, only the measurement unit “pt” is supported.

Font Style

Permitted values for the style attribute are: normal, bold and italic.

7.1.5 Coprocessor Register Descriptor

A coprocessor register descriptor (CPRD) is a string that identifies a coprocessor register.

7.1.5.1 ARM

A CPRD on ARM can be specified in the following way:
“<CpNum> , <CRn> , <CRm> , <Op1>, <Op2>"

Values enclosed by “<>" denote humbers. These numbers are the fields of the ARM MRC or
MCR instruction that is used to read the coprocessor register. For details, please refer to the
ARM architecture reference manual applicable to your target. Note that the field "CpNum”
is currently limited to the value 15 (Coprocessor-15).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

184 CHAPTER 7 System Constants

7.2 System Constants

Ozone defines a set of global integer constants that can be used as parameters for script
functions and user actions.

7.2.1 Host Interfaces

The table below lists permitted values for the host interface parameter (see
Project.SetHostIF on page 233.

Constant Description
usB The debug probe is connected to the host-PC via USB.
IP The debug probe is connected to the host-PC via Ethernet.

7.2.2 Target Interfaces

The table below lists permitted values for the target interface parameter (See Project.Set-
TargetIF on page 233).

Constant Description
JTAG The debug probe is connected to the target via JTAG.
cJTAG The debug probe is connected to the target via cJTAG.
SWD The debug probe is connected to the target via SWD.

7.2.3 Boolean Value Constants

The table below lists the boolean value constants defined within Ozone. Please note that
the capitalization is irrelevant.

Constant Description
Yes, True, Active, On, Enabled The option is set.
No, Off, False, Inactive, Disabled The option is not set.

7.2.4 Value Display Formats

The table below lists permitted values for the display format parameter (see Window.Set-
DisplayFormat on page 218).

Constant Description
Dl SPLAY_FORMVAT DEFAULT Display values in the format that is best suited.
Dl SPLAY_FORVAT_BI NARY Display integer values in binary notation.
DI SPLAY_FORMAT _DECI MAL Display integer values in decimal notation.
Dl SPLAY_FORVAT_HEXADECI MAL Display integer values in hexadecimal notation.
Dl SPLAY_FORVAT CHARACTER Display the text representation of the value.

7.2.5 Memory Access Widths

The table below lists permitted values for the memory access width parameter (see Tar-
get.SetAccessWidth on page 249).

Constant Description

AW ANY Automatic access.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

185

CHAPTER 7 System Constants

Constant Description
AW BYTE Byte access.
AW HALF WORD Half word access.
AW WORD Word access.

7.2.6 Access Types

The table below lists permitted values for the access type parameter (see Break.SetOnData

on page 258).

Constant

Description

AT_READ_ONLY

Read-only access.

AT _WRI TE_ONLY

Write-only access.

AT_READ WRI TE

Read and write access.

AT_NO_ACCESS

Access not permitted.

7.2.7 Connection Modes

The table below lists permitted values for the connection mode parameter (see Debug.Set-
ConnectMode on page 227).

Constant

Description

CM _DOWKNLOAD_RESET

The debugger connects to the target and resets it. The pro-
gram is downloaded to target memory and program execu-
tion is advanced to the main function.

CM ATTACH

The debugger connects to the target and attaches itself to
the executing program.

CM ATTACH HALT

The debugger connects to the target, attaches itself to the
executing program and halts program execution.

7.2.8 Reset Modes

The table below lists permitted values for the reset mode parameter (see Debug.SetReset-

Mode on page 229).

Constant

Description

RM RESET_HALT

Resets the target and halts the program at the reset vector.

RM BREAK_AT_SYMBOL

Resets the target and advances program execu-
tion to the function specified by system variable
VAR _BREAK_AT_THI S_SYMBOL.

RN_RESET_AND_RUN

Resets the target and starts executing the program.

7.2.9 Breakpoint Implementation Types

The table below lists permitted values for the breakpoint implementation type parameter
(see Break.SetType on page 255).

Constant Description

BB_TYPE_ANY The debugger chooses the implementation type.

The breakpoint is implemented using the target’s hardware
breakpoint unit.

BP_TYPE_HARD

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

186

7.2

7.2

7.2

7.2

CHAPTER 7 System Constants

Constant Description

The breakpoint is implemented in software (by amending the

BP_TYPE_SOFT program code with particular instructions).

For breakpoints that have not been assigned a permitted implementation type, the sys-
tem variable default VAR BREAKPO NT_TYPE is used (see System Variable Identifiers on
page 191).

.10 Trace Sources

The Table below lists permitted values for the trace source parameter (see Project.Set-
TraceSource on page 236).

Constant Display Name Description

TRACE_SOURCE_NONE None All trace features of Ozone are disabled.

Instruction trace data is read from the tar-
get’s trace pins (in realtime) and provided to
Ozone’s trace windows. This mode requires a
J-Trace debug probe.

TRACE_SCOURCE_ETM Trace Pins

Instruction trace data is read from the tar-
get’'s embedded trace buffer (ETB).

Printf data is read via the Serial Wire Output
interface and output to the Terminal Window.

TRACE_SOURCE_ETB Trace Buffer

TRACE_SOURCE_SWD SWO

Only one trace source can be active at any given time. The J-Link team plans to remove
this constraint in the near future.

11 Tracepoint Operation Types

The table below lists permitted values for the tracepoint operation parameters required by
tracepoint manipulating actions (see Trace Actions on page 206).

Constant Description
TP_OP_START_TRACE Trace is started when the tracepoint is hit.
TP_OP_STOP_TRACE Trace is stopped when the tracepoint is hit.

12 Newline Formats
The table below lists supported newline formats.

Constant Description
EQOL_FORMAT WN Text lines are terminated with “\r\n”
EQL_FORMAT _UNI X Text lines are terminated with “\n”
ECQL_FORMAT_MAC Text lines are terminated with “\r”
EOQL_FORVAT_NONE No line break.

13 Trace Timestamp Formats

The table below lists supported units for trace timestamps.

Constant Description
TI MESTAMP_FORNMAT_CFF Timestamps are not displayed
TI MESTAMP_FORMAT _| NST_CNT Selects “number of instructions” as timestamp unit

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

187 CHAPTER 7 System Constants

Constant Description
TI MESTAMP_FORVMAT_CYCLES Selects CPU cycles as timestamp unit
TI MESTAMP_FORMAT _TI ME Selects nanoseconds as timestamp unit

7.2.14 Code Profile Export Formats

The table below lists formats that can be specified when exporting code profile data to

CSV files.

Constant Description
CSV_FUNCS Export all program functions.
CSV_LI NES Export all executable source code lines.
CSV_I NSTS Export all program instructions.

7.2.15 Code Profile Export Options

The table below lists options that can be specified with actions Profile.Export and Profile.Ex-
portCSV.

Constant Description

EXPORT_FI LE_PATHS Export file paths instead of file names.

7.2.16 Session Save Flags

The following flags identify session information that can be disabled within User Files (see
User Files on page 137).

Flag Description

Do not save the layout of debug information win-

DI SABLE SAVE W NDOW LAYOUT
— — - dows.

Do not save arrangements of table columns and

DI SABLE SAVE TABLE LAYOQUT .
— — — sort indicators.

Dl SABLE_SAVE_OPEN_FI LES Do not save the list of open source files.
Dl SABLE_SAVE BREAKPO NTS Do not save breakpoints.
Dl SABLE_SAVE EXPRESSI ONS Do not save watched and graphed expressions.
Do not save the Registers Window'’s display configu-

Dl SABLE_SAVE_SELECTED REGS

ration.

7.2.17 Font Identifiers

The following constants identify application fonts (see Edit.Font on page 216).

Constant Description
FONT_APP Default application font.
FONT_APP_MONO Default mono-space application font.
FONT_ASM CCDE assembly code text font.
FONT_CONSOLE Console Window text font.
FONT_EXEC CNT_ASM Font used for Disassembly Window execution counters.
FONT_EXEC _CNT_SRC Font used for Source-Viewer execution counters.
FONT_| TEM NANVE Symbol name text font.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

188

CHAPTER 7 System Constants

Constant

Description

FONT_| TEM VALUE

Symbol value text font.

FONT_LI NE_NUMBERS

Line number text font.

FONT_SRC_CODE

Source code text font.

FONT_TABLE_HEADER

Table header text font.

7.2.18 Color Identifiers

The following constants identify application colors (see Edit.Color on page 215).

Constant

Description

COLOR_ASM BACKG

Disassembly Window background color.

COLOR_ASM LABEL_BACKG

Disassembly Window — label background color.

COLOR_CALL_SI TE_ACTI VE

Function call site highlight (active window).

COLOR_CALL_SI TE_I NACTI VE

Function call site highlight (inactive window).

COLOR CHANGE LEVEL_1_BG

Change Level 1 background color.

COLOR_CHANGE_LEVEL_2_BG

Change Level 2 background color.

COLOR_CHANGE_LEVEL_3_BG

Change Level 3 background color.

COLOR CHANGE_LEVEL_1_FG

Change Level 1 foreground color.

COLOR CHANGE LEVEL_2_FG

Change Level 2 foreground color.

COLOR_CHANGE_LEVEL_3_FG

Change Level 3 foreground color.

COLOR_EXEC PROFI LE_GOOD | NST

Code profile highlighting — good instruction.

COLOR_EXEC_PROFI LE_GOOD | NST

Code profile highlighting — bad instruction.

COLOR_LOGE NG_SCRI PT

Console Window script message color.

COLOR LOGG NG _USER

Console Window command feedback message color.

COLOR_LOGG NG_ERROR

Console Window error message color.

COLOR_LOGG NG JLI NK

Console Window J-Link message color.

COLOR_PC_ACTI VE

PC Line highlight (active window).

COLOR_PC_| NACTI VE

PC Line highlight (inactive window).

COLOR_PC_BACKTRACE

Selected trace PC highlighting color.

COLOR_PROGRESS_BAR_PROGRESS

Progress bar progress background color.

COLOR_PROGRESS_BAR_REMAI NI NG

Progress bar remaining background color.

COLOR_SELECTI ON_HI GHLI GHT

Selection highlight background color.

COLOR_SELECTI ON_HI G+
LI GHT_TEXT

Selection highlight text color.

COLOR_SELECTI ON_SRC_VI EVER

Cursor line background color.

COLOR _SYNTAX_REG STER

Syntax color of assembly code register operands.

COLOR_SYNTAX_LABEL

Syntax color of assembly code labels.

COLOR_SYNTAX_MNEMONI C

Syntax color of assembly code mnemonics.

COLOR_SYNTAX_| MVEDI ATE

Syntax color of assembly code immediates.

COLOR_SYNTAX_KEYWORD

Syntax color of source code keywords.

COLOR_SYNTAX_DI RECTI VE

Syntax color of source code directives.

COLOR_SYNTAX_STRI NG

Syntax color of source code strings.

COLOR_SYNTAX_COMVENT

Syntax color of source code comments.

COLOR_SYNTAX_TEXT

Source code text color.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

189 CHAPTER 7 System Constants

Constant Description
COLOR TABLE_GRI D_LI NES Table grid color.
COLOR TABLE_FI LTER_MATCH Table windows — filter match highlight color.

Color identifiers

7.2.19 User Preference Identifiers

The following constants identify Ozone user preferences (see Edit.Preference on

page 214).

Constant

Description

PREF_BI N_BLOCK_SEPARATOR

Specifies the block separator character for bi-
nary numbers (0:none, 1:half-space, 2:space,
3:comma, 4:colon)

PREF_CG_GROUP_BY_ROOT_FUNCS

Specifies if the call graph window displays root
functions on the top level only (1) or all pro-
gram functions (0).

PREF_CALLSTACK_LAYQOUT

Specifies if the current frame is displayed at
the top or at the bottom of the call stack. Pos-
sible values are LAYOUT CURR FRAME ON TOP
(0) and LAYOUT _CURR_FRAMVE_ON _BOTTOM(1).

PREF_CALLSTACK DEPTH LIM T

Selects the maximum amount of frames the
call stack can hold.

PREF_CALLSTACK_SHOW PARAM NAMES

Specifies if function parameter names should
be shown within the call stack window.

PREF_CALLSTACK_SHOW PARAM VALUES

Specifies if function parameter values should
be shown within the call stack window.

PREF_CALLSTACK_SHOW PARAM TYPES

Specifies if function parameter types should be
shown within the call stack window.

PREF_DEC_BLOCK_SEPARATOR

Specifies the block separator character for dec-
imal numbers (0:none, 1:half-space, 2:space,
3:comma, 4:colon)

PREF_DI ALOG_SHOW DNSA

Indicates if a checkbox should be added to
popup dialogs that allows users to prevent the
dialog from popping up.

PREF_DATA_GRAPH _DATA LIM T

Specifies the data limit of the Data Graph Win-
dow in KB.

PREF_FI LTER_BARS_DI SABLED

Specifies whether table filter bars are globally
disabled.

PREF_HEX_BLOCK_SEPARATOR

Specifies the block separator character for
hexadecimal numbers (0:none, 1:half-space,
2:space, 3:comma, 4:colon)

PREF_| NDENT_I NLI NE_ASSEMBLY

Specifies whether the Source Viewer aligns in-
line assembly code to source code statements.

PREF_LI NE_NUVBER_FREQ

Specifies the Source Viewer’s line number fre-
quency. Possible values are: off (0), current
line (1), all lines (2), every 5 lines (3) and
every 10 lines (4).

PREF_LOCK_HEADER BAR

Specifies whether the Source Viewer header
bar’s auto-hide feature is disabled.

PREF_MAX_SYMBOL_MENMBERS

Specifies the maximum amount of members to
be displayed for expanded symbol items.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

190

CHAPTER 7

System Constants

Constant

Description

PREF_MAX_POAER_SAMPLES

Specifies the data limit of the Power Graph
Window in number of samples.

PREF_PREFI X_FUNC_CLASS_NANES

Specifies if the class name should be prefixed
to C++ member functions.

PREF_RESET_DI ALOG_DNSA

Resets all dialog options “do not show again”.

PREF_RESTRI CT_SRC EDI T

Specifies the editing restriction that applies to
source files (0: no restriction, 1: editing disal-
lowed when debugging, 2: never allowed)

PREF_RES| ZE_COL_ON_EXPAND

Specifies whether table columns resize to con-
tents after item expansions.

PREF_RES| ZE_COL_ON_COLLAPSE

Specifies whether table columns resize to con-
tents after item collapses.

PREF_SHOW ASM_SOURCE

Specifies whether the Disassembly Window
augments assembly code with source code (see
Mixed Mode on page 92).

PREF_SHOW ASM LABELS

Specifies whether the Disassembly Window
augments assembly code with symbol labels.

PREF_SHOW EXP_| NDI CATORS

Specifies whether the Source Viewer displays
source line expansion indicators.

PREF_SHOW BP_BAR_SRC

Specifies whether the Source Viewer displays
its breakpoint bar.

PREF_SHOW BP_BAR_ASM

Specifies whether the Disassembly Window dis-
plays its breakpoint bar.

PREF_SHOW EXEC_COUNTERS_SRC

Specifies if execution counters are displayed
within the Source Viewer

PREF_SHOW EXEC_COUNTERS_ASM

Specifies if execution counters are displayed
within the Disassembly Window.

PREF_SHOW SYMBOL_| CONS

Specifies if symbol names are preceded by an
icon.

PREF_SHOW PROGBAR WHI LE_RUNNI NG

Specifies if a moving progress indicator is dis-
played within the status bar while the program
is running.

PREF_SHOW PRQJECT_WARNI NGS_DI A-
LOG

Specifies if a warnings dialog is to pop up when
project settings are erroneous.

PREF_SHOW CHAR_TEXT

Specifies whether values of (u)char-type sym-
bols are display as “value (character)”.

PREF_SHOW SHORT _TEXT

Specifies whether values of (u)short-type sym-
bols are display as “value (character)”.

PREF_SHOW | NT_TEXT

Specifies whether values of (u)int-type symbols
are display as “value (character)”.

PREF_SHOW CHAR PTR_TEXT

Specifies whether values of (u)char*-type sym-
bols are display as “value (text)”.

PREF_SHOW SHORT _PTR_TEXT

Specifies whether values of (u)short*-type
symbols are display as “value (text)”.

PREF_SHOW | NT_PTR_TEXT

Specifies whether values of (u)int*-type sym-
bols are display as “value (text)”.

PREF_SHOW TOOLTI PS

Specifies whether tooltips are enabled.

PREF_SHOW TI MESTAMPS_CONSOLE

Specifies whether the console window shows
message timestamps.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

CHAPTER 7

System Constants

Constant

Description

PREF_SHOW ENCODI NGS_ASM

Toggles the display of instruction encodings
within the Disassembly Window.

PREF_SHOW ENCODI NGS_| TRACE

Toggles the display of instruction encodings
within the Instruction Trace Window.

PREF_SHOW ENCODI NGS_SRC

Toggles the display of instruction encodings
within the Source Viewer.

PREF_START_W TH_MOST_RECENT_PRQJ

Specifies if the most recent project is automati-
cally opened on application start.

PREF_SESSI ON_SAVE_FLAGS

Bitwise-OR combination of individual flags.
Each flag specifies a session information that is
not to be saved to (and restored from) the user
file (see Session Save Flags on page 187).

PREF_TAB_SPACI NG

Source Viewer tabulator spacing.

PREF_TERM NAL_EOL_FORVAT

Specifies the linebreak characters that the Ter-
minal Window appends to user input before
the input is send to the debuggee (see Newline
Formats on page 186).

PREF_TERM NAL_ECHO | NPUT

Specifies if terminal window input is appended
to Terminal Window output.

PREF_TERM NAL_ZERO TERM | NPUT

Specifies if the string termination character (0)
is appended to Terminal Window input before
the input is send to the debuggee.

PREF_TERM NAL_CLEAR ON_RESET

When set, the terminal window is cleared each
time the program is reset.

PREF_TERM NAL_NO CONTROL_CHARS

Specifies whether the Terminal Window outputs
printable ASCII characters only.

PREF_TERM NAL_DATA LIM T

Specifies the data limit of the Terminal Window
in KB.

PREF_TI MESTAMP_FORNVAT

Specifies the format of the time-axis scales
shown within Ozone’s trace windows. For the
list of supported values, refer to Trace Time-
stamp Formats on page 186.

PREF_TI MELI NE_TOOLTI PS

Enables/disables tooltips within the Timeline
Window.

User Preferences

7.2.20 System Variable Identifiers

The following constants identify Ozone system variables (see Edit.SysVar on page 215).

Constant

Description

VAR _ACCESS W DTH

Memory access width (see Memory Access Widths on
page 184 for permitted values).

Specifies if Ozone can resort to Background Memory Ac-
cess (BMA) emulation when BMA is not supported by the
hardware setup.

VAR _ALLOW BMA_EMULATI ON

Specifies the function where program execution should
be stopped when reset mode “"Reset & Break at Symbol”
is used.

VAR BREAK_AT THI S_SYMBOL

Specifies the default breakpoint implementation type to

VAR_BREAKPQ NT_TYPE use when setting breakpoints.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

192

CHAPTER 7 System Constants

Constant

Description

VAR _MVEM ZONE_RUNNI NG

Selects the default memory zone to be accessed when
the program is running.

VAR _TARGET_POAER ON

Specifies whether J-Link supplies power to the target via
a dedicated target interface pin. This setting must be
active in order to use Ozone’s power profiling features.

VAR_VERI FY_DOMNNLOAD

Specifies if a program data should be read-back from
target memory and compared to original file contents to
detect download errors.

VAR _TRACE_MAX_| NST_CNT

Specifies the maximum amount of instructions that
Ozone can process and store during a streaming trace
session.

VAR _TRACE_TI MESTAMPS_EN-
ABLED

Specifies weather the target is to output (and J-Link/
Ozone is to process) PC timestamps multiplexed into the
trace data stream.

VAR _TRACE_CORE_CLOCK

CPU frequency in Hz. Ozone uses this variable to con-
vert instruction timestamps from CPU cycle count to
time format.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

193

CHAPTER 7 Command Line Arguments

7.3 Command Line Arguments

When Ozone is started from the command line, it is possible to specify additional parameters
that configure the debugger in a certain way. The list of available command line arguments

is given below.

Please note that all arguments containing white spaces must be quoted.

7.3.1 Project Generation

Command line arguments that generate a startup project. The device, target interface and
host interface settings are mandatory.

Parameter

Description

—device <device>

Selects the target device (for example ST-
M32F4071G).

—if <IF>

Assigns the target interface (SWD or JTAG).

-speed <speed>

Specifies the target interface speed in kHz.

-select <hostif>[=<ID>]

Assigns the host interface. <hostif> can be set to
either USB or IP. The optional parameter <ID> can
be set to the serial number or SP address of the J-
Link to connect to.

Sets the host interface to USB and optionally speci-

~usb [<SN>] fies the serial number of the J-Link to connect to.
_ip <IP> Sets the host interface to IP and specifies the IP ad-
P dress of the J-Link to connect to.
—-programfile Sets the program file to open on startup.
Specifies the file path of the generated project. If
_project the project already exists, the new settings are ap-

plied to it. If the project does not exist, it is creat-
ed.

—jlinkscriptfile

Specified the file path to the J-Link script that is ex-
ecuted when the debug session is started.

-jtagconfig <DRPre>,<IRLen>

Configures the JTAG interface (see Project.SetJTAG-
Config on page 234).

7.3.2 Appearance and Logging

Command line arguments that adjust appearance and logging settings.

Argument

Description

-style <style>

Sets Ozone’s GUI theme. Possible values for

<style> “windows”, “cleanlooks”, “plastique”, “*mo-
tif” and “macintosh”.

-logfile <filepath>

When set, Ozone outputs all application-generated
messages to the specified text file.

—-loginterval <bytes>

The byte interval at which the log file is updated.

—debug

Opens a debug console window along with Ozone.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

194 CHAPTER 7 Directory Macros

7.4 Directory Macros

The following macros can be used as placeholders for certain directory names wherever
file path arguments are required:

$(DocDir) The document directory. Expands to “${InstallDir}/doc”.
$(PluginDir) The plugin directory. Expands to “${InstallDir}/plugins”.
$(ConfigDir) The configuration directory. Expands to “${InstallDir}/config”.
$(LibraryDir) The library directory. Expands to “${InstallDir}/lib”".
$(ProjectDir) The Ozone project file directory.

$(InstallDir) The directory where Ozone was installed to.

$(AppDir) The directory of the program file / debuggee.
$(ExecutableDir) The directory of Ozone’s executable file.

$(AppBundleDir) The application bundle directory (macOS).

7.4.1 Environment Variables

Ozone allows file path arguments to contain environment variables. The following environ-
ment variable formats are understood:

Format Operating System(s)
% <varname>% windows
$<varname> unix
$(<varname>) all plattforms

<varname> stands for the name of the environment variable (e.g. HOMEPATH on windows
or HOME on Unix).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

195

7.5 Startup Sequenc

CHAPTER 7

e Flow Chart

Startup Sequence Flow Chart

The figure below illustrates the different phases of the "Debug & Download Program” startup
sequence and how it inter-operates with script functions (see Download & Reset Program on
page 139). Please note that Phases 2 (Breakpoints) and 5 (Initial Program Operation) of the
startup sequence are not displayed in the chart as these phases cannot be reimplemented

and do not trigger any event ha

ndler functions.

Debugging Work Flow
Replacement Functions
and Standard Execution Called Event Handlers
Alternative Invocation
Debug.Start
5 DebugStart Start debug session
B
1)
c
&
O \
Debug.Connect J
BeforeTargetConnect
[TargetConnect +~4{ Connectto Target]
AfterTargetConnect
Target.Reset \
(BeforeTargetReset
- v
2
e r TargetReset j‘{ Reset Target J
AfterTargetReset ‘
Debug.Download \ B
(j BeforeTargetDownload |
T h 4
]
c
g TargetDownload }‘{ Download file to Target]
a
j AfterTargetDownIoacy

Startup Sequence Flow Chart.

Ozone User Guide & Reference Manual (UM08025)

Y

v

© 2013-2019 SEGGER Microcontroller GmbH

196

CHAPTER 7

7.6 Errors and Warnings

This section lists all application errors and warnings that may occur during the debugging
workflow. For each exception, possible causes and solutions are summarized.

Errors and Warnings

For details on how to conduct solution proposals that contain toolchain (compiler/linker/IDE)
settings, please refer to the user guide of the concerning software tool.

Follow the instructions in Support on page 274 when the problem persists.

Note

Work on the application message tables is currently ongoing.

Code Description Possible Causes Solution Proposals
Reduce the amount of
The ELF file contains debugging information
1000 The ELF parser is out of | more debug symbols emitted to the program
memory. than fit into Host PC file (e.g. use -g1 instead
RAM. of -g3 on GCC and simi-
lar measures).
The ELF parser encoun- Software bug in the em- | Contact SEGGER sup-
tered an internal error . .
1001) . ployed toolchain or in port (see Support on
while parsing a data sec- 0 , 5
tion. zone's ELF parser. page 274).
The ELF parser encoun- Incorrect toolchain set-
1002 tered an empty data sec- tinas Check toolchain settings.
tion. 9s-.
The ELF parser encoun-
tered an invalid debug 1. Unsupported debug Change the debug in-
symbol reference (spec- | symbol format or exten- .
o . ; . formation output format
1003 ified as file offset). The sion. 2. Software bug in
. . . (e.g. from DWARF-5 to
file offset does not point |the employed toolchain DWARF-4)
to the base of a debug or in Ozone’s ELF parser. ’
symbol.
The ELF parser encoun-
tered_ an invalid symbol 1. Unsupported debug Change the debug in-
location reference (spec- | symbol format or exten- .
o . / : formation output format
1004 ified as file offset). The sion. 2. Software bug in
. . . (e.g. from DWARF-5 to
file offset does not point | the employed toolchain DWARF-4)
to the base of a symbol | or in Ozone’s ELF parser. ’
location record.
_ Change the debug in-
The ELF parser encoun Unsupported debug sym- | formation output format
1005 tered an unsupported bol f . ¢ DWARF
symbol attribute format ol format or extension. | (e.g. from -5 to
' DWARF-4).
The program file does ;-?: ;gglscg,fg i%tglngrfer_ Change toolchain set-
1006 not contain debug infor- g tings to generate DWARF
. ate DWARF debug infor- . -
mation. . debug information.
mation.
The ELF parser encoun-
&a;igeabcing;lzaet'iosr}el"sg't Software bug in the em- | Contact SEGGER sup-
1007 Y ployed toolchain or in port (see Support on

than expected from the
unit’s header informa-
tion.

Ozone’s ELF parser.

page 274).

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

197

CHAPTER 7

Errors and Warnings

Code Description Possible Causes Solution Proposals
The ELF parser encoun- Change the debug in-
1008 tered a debug symbol Unsupported debug sym- | formation output format
encoded in an unsup- bol format or extension. | (e.g. from DWARF-5 to
ported format. DWARF-4).
.) Change the debug in-
The symbol location de Unsupported debug sym- | formation output format
1009 coder encountered an .
bol format or extension. | (e.g. from DWARF-5 to
unsupported operand. DWARF-4)
1. Unsupported debug -
ELF data section de- symbol format or exten- Changg the debug in
/ ; formation output format
1010 bug_I oc has an unex- sion. 2. Software bug in (e.g. from DWARF-5 to
pected byte size. the employed toolchain DV'\/gARF-4)
or in Ozone’s ELF parser.)
1. Unsupported debug -
ELF data section de- symbol format or exten- Chang(_a the debug in
i / . formation output format
1011 bug_I i ne has an unex- sion. 2. Software bug in (e.g. from DWARF-5 to
pected byte size. the employed toolchain DV.\/gARF-4)
or in Ozone’s ELF parser.)
1. Unsupported debug -
ELF data section de- symbol format or exten- Changg the debug in
; . formation output format
1012 bug_franme has an unex- |sion. 2. Software bug in (e.g. from DWARF-5 to
pected byte size. the employed toolchain D\i\?ARF-4)
or in Ozone’s ELF parser. '
The address mapping ta- | Software bug in the em- | Contact SEGGER sup-
1013 ble decoder encountered | ployed toolchain or in port (see Support on
an invalid file index. Ozone’s ELF parser. page 274).
The address mapping ta- Software bug in the em- | Contact SEGGER sup-
ble decoder encountered . .
1014 . A . ployed toolchain or in port (see Support on
an invalid directory in- 0 ,
dex. zone's ELF parser. page 274).
ELF data section de- i #Eg??gfﬂ:ﬁdo?eetﬁgn_ Change the debug in-
bug_franme contains an y . formation output format
1015 sion. 2. Software bug in
unsupported address ; (e.g. from DWARF-5 to
Lo the employed toolchain
size field. . , DWARF-4).
or in Ozone’s ELF parser.
ELF data section de- i #Ei??gfn:ido?eezign- Change the debug in-
bug_f rane contains an y . formation output format
1016 sion. 2. Software bug in
unsupported segment . (e.g. from DWARF-5 to
A the employed toolchain
size field. . , DWARF-4).
or in Ozone’s ELF parser.
The ELF parser encoun-)
tered an inconsistency Software bug in the em- Contact SEGGER sup
1017 I X . port (see Support on
within call frame infor- ployed toolchain. age 274)
mation data. pag ’
ELF data section de- Change the debug in-
1018 bug_f ranme contains an Unsupported debug sym- | formation output format
unsupported data aug- bol format or extension. | (e.g. from DWARF-5 to
mentation. DWARF-4).
The call frame informa- i #Eg??gfﬂ:ﬁdo?eetﬁgn_ Change the debug in-
tion decoder encoun- y . formation output format
1019 sion. 2. Software bug in

tered an internal error
state.

the employed toolchain
or in Ozone’s ELF parser.

(e.g. from DWARF-5 to
DWARF-4).

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

198

CHAPTER 7

Errors and Warnings

Code Description Possible Causes Solution Proposals
1. Unsupported debug -
ELF data section de- symbol format or exten- Changg the debug in
. . ; . formation output format
1020 bug_frane is encoded in | sion. 2. Software bug in
; (e.g. from DWARF-5 to
an unsupported format. |the employed toolchain
. , DWARF-4).
or in Ozone’s ELF parser.
The ELF parser encoun-
tered an invalid address | 1. Unsupported debug Change the debug in-
range reference (spec- symbol format or exten- .
i . / . formation output format
1021 ified as file offset). The sion. 2. Software bug in
. . . (e.g. from DWARF-5 to
file offset does not point | the employed toolchain DWARF-4)
to the base of an ad- or in Ozone’s ELF parser.)
dress range record.
The program macro in- 1. Unsupported debug Change the debug in-
X symbol format or exten- ;
formation decoder en- / ; formation output format
1022 . sion. 2. Software bug in
countered an internal er- . (e.g. from DWARF-5 to
the employed toolchain
ror state. . , DWARF-4).
or in Ozone’s ELF parser.
The ELF parser attempt-
ed to load an ELF file)
1023 that does not contain the ;illgvggrr:'ﬂ fLI:dselected 2 Rebuild the ELF file.
ELF file byte identifica- pted.
tion pattern.
The ELF parser attempt-
ed to load an ELF file
1024 that is not‘an executable Ipcorrect tqolchaln set- Check toolchain settings.
program (instead, the tings or build target.
file is most likely a
shared object).
The ELF parser attempt-
1025 ed t_o load an ELF_fl_Ie I_ncorrect tqolchaln set- Check toolchain settings.
having an unspecified tings or build target.
class (ELF_CLASS NONE).
The ELF parser attempt-
ed to load an ELF file Incorrect toolchain set-
1026 having an unspecified tinas or build taraet Check toolchain settings.
data encoding (ELF_DA- 9 get.
TA NONE).
The ELF parser attempt-
ed to load an ELF file Incorrect toolchain set-
1027 whose header version tinas or build taraet Check toolchain settings.
number is not EV_CUR- 9 get.
RENT.
The ELF parser attempt- | ;o + toolchain set-
ed to load an ELF file ; . . .
1028 tings or unsupported file | Check toolchain settings.
that has an unsupported f
. . ormat.
file version number.
The ELF parser attempt-
ed to load an ELF file but ELF files previously Contact SEGGER sup-
the maximum number of .
1029) . opened in Ozone were port (see Support on
ELF files that can be si-
. not closed correctly. page 274).
multaneously opened is
already open.
_ | 1. Incorrect file access 1. Check your file sys-
1030 The ELF parser attempt permissions. 2. Corrupt |tem access permissions

ed to load an ELF file but

Ozone User Guide & Reference Manual (UM08025)

file header.

© 2013-2019 SEGGER Microcontroller GmbH

2. Check that the file is

199

CHAPTER 7

Errors and Warnings

Code Description Possible Causes Solution Proposals
could not open the file not in us3e by anothehr
for reading process 3. cc_)n_tactt e
' system administrator.
The ELF parser attempt-
ed to load an ELF file 1. File was binary mod-
1031 yvhose m_ternal file size ified by an external tool Rebuild the ELF file.
information does not (e.g. readelf ori nst al -
match the actual file | _name_t ool).
size.
Not enough free memory .
1032 to load the ELF file. Insufficient target RAM. | Upgrade RAM.
ed to load an ELF file but | 1. Incorrect file access P o
. 2. Check that the file is
1033 encountered an error permissions. 2. Corrupt not in use by another
while reading file con- file header. rocess 3 cgntact the
tents from the hard disk. P L
system administrator.
The ELF parser failed to
parse all of the DWARF | Unsupported debug sym- Contact SEGGER sup
1034 . port (see Support on
debug symbols provided | bol format. age 274)
by the ELF file correctly. pag '
Incorrect toolchain set-
The ELF parser attempt- | tings or build target,
1035 ed to load an ELF file e.g. word size mismatch | 1 Check toolchain set-
that cannot be executed | (32-bit/64-bit) or tar- tings.
on the selected target. get processor type mis-
match.
1. Project setting “Tar-) o
The ELF parser attempt- | get.SetEndianess” not létprsoéfé:;dsizt:ggs,, ﬁzz
ed to load an ELF file present or set incorrect- gre:sent or set incorrect-
1036 whose data endianess ly 2. Incorrect toolchain P :
: L ly 2. Incorrect toolchain
does not match the tar- | settings pertaining to the : L
. settings pertaining to the
get settings. byte order of the output b £ th
file. yte order of the output.
1. Project setting “Tar- i o
The ELF parser attempt- | get.SetEndianess” not 1&”;;?;;;2:2%, ﬁi;
ed to load an ELF file present or set incorrect- gre.sent or set incorrect-
1037 whose instruction endi- | ly 2. Incorrect toolchain P ;
: . ly 2. Incorrect toolchain
aness does not match settings pertaining to the : -
; settings pertaining to the
the target settings. byte order of the output b fth
file. yte order of the output.
The list of available
. 1. Incorrect user input. | eMOry Zones is print-
An incorrect memory) ed along with this warn-
. 2. Ozone failed to deter- |. . .
2000 zone name was input by mine the names of the ing. If an incorrect input
the user. target’'s memory zones can be ruled out, contact
9 Y " | SEGGER support (see
Support on page 274).
A requested power sam- J-Link/]-Trace debug 1. Update J-Link soft-
. . probes currently support .
pling frequency is not - ware drivers (e.g. by us-
3000 power sampling rates of |. .
supported by the hard- ing the J-Link DLL Up-
up to 100 kHz, depend-
ware setup. . dater tool).
ing on the model.
3001 Power sampling could 1. Power output to the 1. Enable power output

Ozone User Guide & Reference Manual (UM08025)

not be started.

target is not enabled

(see Power Graph Win-

© 2013-2019 SEGGER Microcontroller GmbH

200 CHAPTER 7 Errors and Warnings

Code Description Possible Causes Solution Proposals

(see System Variable

L dow on page 112). 2.
Identifiers on page 191). Update Jp—LgiJnk sonware
2. The hardware setup drivers (e.g. by using the

does not support power |y, ;.\ "ny) | pdater tool).
sampling.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

201 CHAPTER 7 Action Tables

7.7 Action Tables

The following tables provide a quick reference on user actions provided by Ozone (see User
Actions on page 35).

7.7.1 Breakpoint Actions
Actions that modify the debugger’s breakpoint state.

Action Description
Break.Set Sets an instruction breakpoint.
Break.SetEx Sets an instruction breakpoint.
Break.Clear Clears an instruction breakpoint.
Break.Enable Enables an instruction breakpoint.
Break.Disable Disables an instruction breakpoint.
Break.SetOnSrc Sets a source breakpoint.
Break.SetOnSrcEx Sets a source breakpoint.
Break.ClearOnSrc Clears a source breakpoint.
Break.EnableOnSrc Enables a source breakpoint.
Break.DisableOnSrc Disables a source breakpoint.
Break.ClearAll Clears all code breakpoints.

Break.Edit Edits a breakpoints advanced properties.
Break.SetType Sets a breakpoint’s implementation type.
Break.SetCommand Assigns a script callback function to a breakpoint.
Break.SetCmdOnAddr Assigns a script callback function to a breakpoint.
Break.SetOnData Sets a data breakpoint.

Break.ClearOnData Clears a data breakpoint.

Break.EnableOnData Enables a data breakpoint.

Break.DisableOnData Disables a data breakpoint.

Break.EditOnData Edits a data breakpoint.

Break.SetOnSymbol Sets a data breakpoint on a symbol.
Break.ClearOnSymbol Clears a data breakpoint on a symbol.

Break.EnableOnSymbol Enables a data breakpoint on a symbol.

Break.DisableOnSymbol | Disables a data breakpoint on a symbol.

Break.EditOnSymbol Edits a data breakpoint on a symbol.

Break.ClearAllOnData Clears all data breakpoints.

7.7.2 Code Profile Actions

Code profile related actions.

Action Description
Profile.Export Exports the current code profile data to a text file.
Profile.ExportCSV Exports the current code profile data to a CSV file.
Profile.Exclude Filters program entities from the code profile statistic.
Profile.Include Re-adds program entities to the code profile statistic.
Coverage.Exclude Filters program entities from the code coverage statistic.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

202

CHAPTER 7

Action

Description

Coverage.Include

Re-adds program entities to the code coverage statistic.

Coverage.ExcludeNOPs

Filters NOP instructions from the code coverage statistic.

7.7.3 Debug Actions

Actions that modify the program execution point and that configure the debugger’s con-

nection, reset and stepping

behavior.

Action

Description

Debug.Start

Starts the debug session.

Debug.Stop

Stops the debug session.

Debug.Connect

Establishes a J-Link connection to the target.

Debug.Disconnect

Disconnects the J-Link connection to the target.

Debug.Download

Downloads the program file to the target.

Debug.Continue

Resumes program execution.

Debug.Halt

Halts program execution.

Debug.Reset

Reset the program.

Debug.SteplInto

Steps into the current function.

Debug.StepOver

Steps over the current function.

Debug.StepOut

Steps out of the current function.

Debug.SetNextPC

Sets the next machine instruction to be executed.

Debug.SetNextStatement

Sets the next source statement to be executed.

Debug.RunTo

Advances program execution to a particular location.

Debug.SetResetMode

Sets the reset mode.

Debug.SetConnectMode

Sets the connection mode.

Debug.ReadIntolnstCache

ta.

Debug.IsHalted

Queries the program state.

7.7.4 Edit Actions

Actions that edit behavioral and appearance settings of the debugger.

Action

Description

Edit.Preference

Edits a user preference.

Edit.SysVar Edits a system variable.
Edit.Color Edits an application color.
Edit.Font Edits an application font.

Edit.DisplayFormat

Edits an item’s integer value display format.

Edit.RefreshRate

Edits the refresh rate of a watched expression.

Edit.MemZone

Edits the memory zone of a watched expression.

7.7.5 ELF Actions

Actions for retrieving ELF program file information.

Ozone User Guide & Reference Manual (UM08025)

Action Tables

Initializes the instruction cache with target memory da-

© 2013-2019 SEGGER Microcontroller GmbH

203 CHAPTER 7 Action Tables

Action Description
EIf.GetBaseAddr Returns the program file’'s download address.
Elf.GetEntryPointPC Returns the initial value of the program counter.
Elf.GetEntryFuncPC Returns the first PC of the program’s entry function.
EIf.GetExprValue Evaluates a symbol expression.

Elf.GetEndianess Returns the program file’s byte order.

7.7.6 File Actions

Actions that perform file system and related operations.

Action Description
File.NewProject Creates a new project.
File.NewProjectWizard Opens the Project Wizard.

File.Open Opens a file.

File.OpenRecent Reopens a recently opened program file.
File.Load Loads a file.

File.Close Closes a source code document.

File.CloseAll Closes all open source code documents.
File.CloseAllButThis Closes all but the active source code document.
File.Find Searches for a text pattern.

File.SaveProjectAs Saves the project file under a new file path.
File.SaveAll Saves all modified files.

File.Exit Closes the application.

7.7.7 Find Actions

Actions that locate program entities.

Action Description
Find.Text Opens the Quick Find Widget.
Find.TextInFiles Opens the Find In Files Dialog.
Find.Function Locates a program function.
Find.GlobalData Locates a global symbol.

7.7.8 Help Actions

Actions that display help related information.

Action Description
Help.About Shows the About Dialog.
Help.Commands Prints the command help to the Console Window.
Help.Manual Displays the user manual.

7.7.9 J-Link Actions

Actions that perform J-Link operations.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

204

CHAPTER 7 Action Tables

Action

Description

Exec.Connect

Establishes the connection between J-Link and target.

Exec.Reset

Hardware-resets the target (in a default, target-specific
way).

Exec.Download

Downloads a program or a data file to target memory.

Exec.Command

Executes a J-Link command.

7.7.10 OS Actions

Actions that perform RTOS related operations.

Action

Description

0S.AddContextSwitchSymbol

Identifies a code symbol that executes a task
switch.

7.7.11 Project Actions

Ozone User Guide & Reference Manual (UM08025)

Actions that configure the debugger for operation in a particular software and hardware
environment.

Action

Description

Project.SetDevice

Specifies the target device.

Project.AddSvdFile

Adds a register set description file.

Project.SetHostIF

Specifies the host interface.

Project.SetTargetIF

Specifies the target interface.

Project.SetTIFSpeed

Specifies the target interface speed.

Project.SetJTAGConfig

Configures the JTAG target interface.

Project.SetTraceSource

Selects the trace source to use.

Project.SetTracePortWidth

Specifies the number of trace pins comprising the TP.

Project.SetTraceTiming

Configures the trace pin sampling delays.

Project.ConfigSWO

Configures the Serial Wire Output (SWO) interface.

Project.SetSemihosting

Enables or disables the Semihosting IO interface.

Project.ConfigSemihosting

Configures the Semihosting IO interface.

Project.SetRTT

Enables or disables Real Time Transfer (RTT).

Project.AddRTTSearchRange

RTT configuration command.

Project.AddFileAlias

Sets a file path alias.

Project.AddPathSubstitute

Replaces substrings within source file paths.

Project.AddRootPath

Specifies the program'’s root path.

Project.AddSearchPath

Adds a path to the program’s list of search paths.

Project.SetCorePlugin

Specifies the file path of the target support plugin.

Project.SetOSPlugin

Specifies the RTOS awareness plugin to be used.

Project.SetBPType

Sets the allowed breakpoint implementation type.

Project.SetMemZoneRunning

Sets the default zone accessed when the CPU is running.

Project.SetlLinkScript

Sets the J-Link-Script to be executed on debug start.

Project.SetJLinkLogFile

Sets the text file that receives J-Link logging output.

Project.RelocateSymbols

Relocates one or multiple symbols.

Project.SetConsoleLogFile

Sets the text file that receives console window output.

© 2013-2019 SEGGER Microcontroller GmbH

CHAPTER 7 Action Tables

Action

Description

Project.SetTerminalLogFile

Sets the text file that receives terminal window output.

Project.DisableSessionSave

Disables saving of individual session information.

7.7.12 Script Actions

Actions that perform script operations.

Action

Description

Script.Exec

Executes a project file script function.

Script.DefineConst

Defines an integer constant to be used within scripts.

7.7.13 Target Actions

Actions that perform target memory and register I0.

Action

Description

Target.SetReg

Writes a target register.

Target.GetReg

Reads a target register.

Target.WriteU32

Writes a word to target memory.

Target.WriteU16

Writes a half word to target memory.

Target.WriteU8

Writes a byte to target memory.

Target.ReadU32

Reads a word from target memory.

Target.ReadU16

Reads a half word from target memory.

Target.ReadU8

Reads a byte from target memory.

Target.FillMemory

Fills a block of target memory with a particular value.

Target.SaveMemory

Saves a block of target memory to a binary data file.

Target.LoadMemory

Downloads the contents of a data file to target memory.

Target.SetAccessWidth

Specifies the memory access width.

Target.SetEndianess

Configures the debugger for a particular data endianess.

Target.SetFPU

Selects the floating pointer register access permission.

Target.LoadMemoryMap

Initializes the target’'s memory map from file contents.

Target.AddMemorySegment

Adds a memory segment to the memory map.

7.7.14 Tools Actions

Actions that open tool dialogs.

Action

Description

Tools.JLinkSettings

Opens the J-Link Settings Dialog.

Tools.TraceSettings

Opens the Trace Settings Dialog.

Tools.Preferences

Opens the User Preference Dialog.

Tools.SysVars

Displays the System Variable Editor.

7.7.15 Toolbar Actions

Actions that modify the state of toolbars.

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

206

CHAPTER 7

Action

Description

Toolbar.Show

Displays a toolbar.

Toolbar.Close

Hides a toolbar.

7.7.16 Trace Actions

Trace-related actions.

Action

Description

Trace.SetPoint

Sets a tracepoint.

Trace.ClearPoint

Clears a tracepoint.

Trace.EnablePoint

Enables a tracepoint.

Trace.DisablePoint

Disables a tracepoint.

Trace.ClearAllPoints

Clears all tracepoints.

Trace.ExportCSV

Exports trace data to a CSV file.

7.7.17 Utility Actions

Script function utility actions.

Action Description
Util.Sleep Pauses the current operation for a given amount of time.
Util.Log Prints a message to the console window.
Util.LogHex Prints a formated message to the console window.

7.7.18 Show Actions

Actions that navigate to particular objects displayed on the graphical user interface.

Action

Description

Show.Data

Displays the data location of a program variable.

Show.Source

Displays the source code location of an object.

Show.Disassembly

Displays the assembly code of an object.

Show.CallGraph

Displays the call graph of a function.

Show.InstTrace

Displays a position in the instruction execution history.

Show.Memory

Displays a memory location.

Show.Line Displays a text line in the active document.
Show.PC Displays the PC instruction in the Disassembly Window.
Show.PCLine Displays the PC line in the Source Viewer.

Show.NextResult

Displays the next search result item.

Show.PrevResult

Displays the previous search result item.

7.7.19 Window Actions

Actions that edit the state of debug information windows.

Action

Description

Window.Show

Shows a window.

Ozone User Guide & Reference Manual (UM08025)

Action Tables

© 2013-2019 SEGGER Microcontroller GmbH

207

CHAPTER 7 Action Tables

Action

Description

Window.Close

Closes a window.

Window.SetDisplayFormat

Sets a window’s integer value display format.

Window.Add

Adds a symbol to a window.

Window.Remove

Removes a symbol from a window.

Window.Clear

Clears a window.

Window.ExpandAll

Expands all items of a window.

Window.CollapseAll

Collapses all items of a window.

7.7.20 Watch Actions

Actions affiliated with the Watched Data Window.

Action

Description

Watch.Add

Adds an expression to the Watched Data Window

Watch.Insert

Inserts an expression into the Watched Data Window

Watch.Remove

Removes an expression from the Watched Data Window

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

208 CHAPTER 7 User Actions

7.8 User Actions

7.8.1 File Actions

7.8.1.1 File.NewProject

Creates a new project (see File Menu on page 38).

Prototype
int File.NewProject();
Return Value

-1: error
0: success

GUI Access

Main Menu — File - New — New Project (Ctrl+N)

7.8.1.2 File.NewProjectWizard
Opens the Project Wizard (see Project Wizard on page 31).

Prototype
int File. NewProjectWzard();
Return Value

-1: error
0: success

GUI Access

Main Menu — File - New — New Project Wizard (Ctrl+Alt+N)

7.8.1.3 File.Open

Opens a file (see File Menu on page 38). When a program file is opened and the debug
session is running, the program is automatically downloaded to target memory.

Note

Special care must be taken when placing this command into script functions (see
Avoiding Script Function Recursions on page 151).

Prototype
int File.Open(const char* sFil ePath);

Argument Meaning
. File path of a project-, source- or program-file. The file path may con-
sFilePath A ;
tain directory macros (see Directory Macros on page 194).

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

209 CHAPTER 7 User Actions

0: success

GUI Access
Main Menu — File — Open (Ctri+0)

7.8.1.4 File.OpenRecent

Reopens a recently opened program file.

Prototype
int File.OpenRecent (int |ndex);

Argument Meaning

Position of the file within the file menu’s recent programs list, starting

Index at index 0.

Return Value

-1: error
0: success

GUI Access

Main Menu — File — Recent Programs

7.8.1.5 File.Find

Searches a text pattern in source code documents (see Find In Files Dialog on page 57).

Prototype
int File.Find(const char* sFindWat);
Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find In Files (Ctrl+Shift+F)

7.8.1.6 File.Load

Downloads a program or data file to target memory. This command essentially performs
the same operation as File.Open, but it does not reset the target prior to download and
does not perform the initial program operation (see Download Behavior Comparison on
page 151). When an ELF or compatible program file is specified, its debug symbols replace
any previously loaded debug symbols.

Note

Special care must be taken when placing this command into script functions (see
Avoiding Script Function Recursions on page 151).

Prototype
int File.Load(const char* sFilePath, U32 Address);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

210 CHAPTER 7 User Actions

Argument Meaning
. Path to a program or data file. The file path may contain directory
sFilePath .
macros (see Directory Macros on page 194).
Memory address to download the data contents to. In case the ad-
Address

dress is provided by the file itself, 0 can be specified.

Return Value

-1: error
0: success

GUI Access

None

7.8.1.7 File.Close

Closes a document (see Source Viewer on page 121).

Prototype

int File. O ose(const char* sFil ePath);

Argument Meaning

File path (or name) of a source file. The file path may contain directo-

sFilePath ry macros (see Directory Macros on page 194).

Return Value

-1: error
0: success

GUI Access

Main Menu — Window — Close Document (Ctrl+F4)

7.8.1.8 File.CloseAll

Closes all open documents (see File Menu on page 38).

Prototype
int File.doseAl();

Return Value

-1: error
0: success

GUI Access

Main Menu — Window — Close All Documents (Ctrl+Alt+F4)

7.8.1.9 File.CloseAllButThis

Closes all but the active document (see Source Viewer on page 121).

Prototype
int File.d oseAllButThis();

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

211 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access
Document Tab — Context Menu — Close All But This (Ctrl+Shift+F4)

7.8.1.10 File.SaveAll

Saves all modified files.

Prototype
int File.SaveAll ();
Return Value

-1: error
0: success

GUI Access

Main Menu — File — Save all

7.8.1.11 File.SaveProjectAs

Saves the project file under a new file path.

Prototype

int File.SaveProjectAs(const char* sFil ePath);

Argument Meaning

File path (or name) of a .jdebug file. The file path may contain direc-

sFilePath tory macros (see Directory Macros on page 194).

Return Value

-1: error
0: success

GUI Access
Main Menu — File — Save Project as (Ctrl+Shift+S)

7.8.1.12 File.Exit

Closes the application (see File Menu on page 38).

Prototype
int File.Exit();

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

212 CHAPTER 7 User Actions

GUI Access
Main Menu — File — Exit (Alt+F4)

7.8.2 Find Actions

7.8.2.1 Find.Text

Shows the Quick Find Widget to locate a text pattern within the active document (see Quick
Find Widget on page 70).

Prototype
int Find. Text();
Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find (Ctrl+F)

7.8.2.2 Find.TextInFiles
Opens the Find In Files Dialog (see Find In Files Dialog on page 57).

Prototype
int Find. TextlnFiles();
Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find In Files (Ctrl+Shift+F)

7.8.2.3 Find.Function

Shows the Quick Find Widget to locate a program function (see Quick Find Widget on
page 70).

Prototype

i nt Find. Function();

Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find Function (Ctrl4+M)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

213 CHAPTER 7 User Actions

7.8.2.4 Find.GlobalData
Shows the Quick Find Widget to locate a global variable (see Quick Find Widget on page 70).

Prototype
int Find. G obal Data();

Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find Global Data (Ctrl+1J)

7.8.2.5 Find.SourceFile
Shows the Quick Find Widget to open a source file (see Quick Find Widget on page 70).

Prototype
i nt Find. SourceFile();

Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find Source File (Ctrl+K)

7.8.3 Tools Actions

7.8.3.1 Tools.JLinkSettings
Opens the J-Link Settings Dialog (see J-Link Settings Dialog on page 61).

Prototype
i nt Tool s. JLi nkSettings();

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — J-Link Settings (Ctrl+Alt+1])

7.8.3.2 Tools.TraceSettings
Opens the Trace Settings Dialog (see Trace Settings Dialog on page 63).

Prototype

int Tool s. TraceSettings();

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

214 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Trace Settings (Ctrl+Alt+T)

7.8.3.3 Tools.Preferences

Displays the User Preference Dialog (see User Preference Dialog on page 65).

Prototype

i nt Tool s. Preferences();

Return Value

-1: error
0: success

GUI Access

Main Menu — Tools — Preferences (Ctrl+Alt+P)

7.8.3.4 Tools.SysVars
Displays the System Variable Editor (see System Variable Editor on page 62).

Prototype
int Tool s. SysVars();

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — System Variables (Ctrl+Alt+V)

7.8.4 Edit Actions

7.8.4.1 Edit.Preference

Edits a user preference.

Prototype

int Edit.Preference(int ID, int Value);

Argument Meaning

User preference identifier (see User Preference Identifiers on
page 189).

User preference value. Certain user preferences are specified in a
predefined format (see Value Descriptors on page 182).

ID

Value

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

215 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

None.

7.8.4.2 Edit.SysVar

Edits a system variable (see System Variable Identifiers on page 191).

Prototype
int Edit.SysVar(int 1D, int Value);

Argument Meaning
ID System variable identifier (see System Variable Identifiers on
page 191).
Value System variable value. Certain system variable values are specified in

a predefined format (see Value Descriptors on page 182).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — System Variables (Ctrl4+Alt+V)

7.8.4.3 Edit.Find

Searches a text pattern in the active document (see Source Viewer on page 121). Once
executed, hotkey F3 can be used to locate the next occurrence.

Prototype
int Edit.Find(const char* sFindwWat);
Return Value

-1: error
0: success

GUI Access
Main Menu — Find — Find (Ctrl+F)

7.8.4.4 Edit.Color

Edits an application color (see Color Identifiers on page 188).

Prototype
int Edit.Color(int ID, int Value);
Argument Meaning
ID Color identifier (see Color Identifiers on page 188).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

216

CHAPTER 7 User Actions

Argument Meaning

Value Color descriptor (see Color Descriptor on page 182).

Return Value

-1: error
0: success

GUI Access

Main Menu — Edit — Preferences — Appearance

7.8.4.5 Edit.Font

Edits an application font (see Font Identifiers on page 187).

Prototype

int Edit.Font(int ID, const char* sFont);

Argument Meaning
ID Font identifier (see Font Identifiers on page 187).
sFont Font descriptor (see Font Descriptor on page 182).

Return Value

-1: error
0: success

GUI Access

Main Menu — Edit — Preferences — Appearance

7.8.4.6 Edit.DisplayFormat

Edits an object’s value display format.

Prototype

int Edit.DisplayFormat(const char* sObject, int Format);

Argument Meaning
sObject Name of a debug information window, program variable or register.
Format Value Display Formats (see Value Display Formats on page 184).

Return Value

-1: error
0: success

GUI Access

Window — Context Menu — Display As

7.8.4.7 Edit.RefreshRate

Sets the refresh rate of a watched expression (see Live Watches on page 150).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

217

CHAPTER 7 User Actions

Prototype
int Edit.RefreshRate (const char* sExpression, int Frequency);
Argument Meaning
sExpression C-Language expression (see Working With Expressions on page 154).
Frequency Update frequency in Hz (see Frequency Descriptor on page 182).

Return Value

-1: error
0: success

GUI Access
Watched Data Window — Context Menu — Refresh Rate

7.8.4.8 Edit.MemZone

Assigns a memory zone to a watched expression (see Live Watches on page 150). Whenever
an update of the expression’s value is requested, the specified memory zone is accessed.

Prototype
int Edit.MenZone (const char* sExpression, const char* sMeniZone);
Argument Meaning
sExpression C-Language expression (see Working With Expressions on page 154).
sMemZone Memory zone name

Return Value

-1: error
0: success

GUI Access

Watched Data Window — Context Menu — Memory Zone

7.8.5 Window Actions

7.85.1 Window.Show

Shows a window (see Window Layout on page 109).

Prototype
i nt W ndow. Show const char* sW ndow) ;

Argument Meaning

Name of the window (e.g. “Source Files”). See View Menu on

sWindow page 38.

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

218 CHAPTER 7 User Actions

GUI Access

Main Menu — View — Window Name (Shift+Alt+Letter)

7.8.5.2 Window.Close

Closes a window (see Window Layout on page 109).

Prototype

i nt Wndow. d ose(const char* sWndow);

Argument Meaning

Name of the window (e.g. “Source Files”). See View Menu on

sWindow page 38.

Return Value

-1: error
0: success

GUI Access

Main Menu — Window — Close Window (Alt+X)

7.8.5.3 Window.CloseAll

Closes all windows (see Window Layout on page 109).

Prototype
i nt Wndow. O oseAll();
Return Value

-1: error
0: success

GUI Access
Main Menu — Window — Close All Window (Alt+Shift+X)

7.8.5.4 Window.SetDisplayFormat

Set’s a window’s value display format (see Display Format on page 44).

Prototype

i nt W ndow. Set Di spl ayFor nat (const char* sWndow, int Format);

Argument Meaning
. Name of the window (e.g. “Source Files”). See View Menu on
sWindow
page 38.
Format Value display format (see Value Display Formats on page 184).

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

219 CHAPTER 7 User Actions

GUI Access
Window — Context Menu — Display All As (Alt+Number)

7.85.5 Window.Add

Adds a symbol to a debug window (see Debug Information Windows on page 71).

Prototype
i nt W ndow. Add(const char* sW ndow, const char* sSynbol);
Return Value

-1: error
0: success

GUI Access
Window — Context Menu — Add (Alt+Plus)

7.8.5.6 Window.Insert

Inserts a symbol into a debug window (see Debug Information Windows on page 71).

Prototype

int Wndow Insert (const char* sWndow, const char* sSynbol, const char*
sSynbol Bef ore) ;

Argument Meaning
. Name of the window (e.g. “"Source Files”). See View Menu on
sWindow
page 38.
sSymbol Name of the symbol to insert.
sSymbolBefore | Insert before this symbol. When empty, append the symbol.

Return Value

-1: error
0: success

GUI Access

None

7.8.5.7 Window.Remove

Removes a symbol from a debug window (see Debug Information Windows on page 71).

Prototype
i nt W ndow. Renove(const char* sWndow, const char* sSynbol);
Return Value

-1: error
0: success

GUI Access

Window — Context Menu — Remove (Del)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

220 CHAPTER 7 User Actions

7.8.5.8 Window.Clear

Clears a window.

Prototype
int Edit. Term nal Settings();

Return Value

-1: error
0: success

GUI Access
Window — Context Menu — Clear (Alt+Del)

7.8.5.9 Window.ExpandAll

Expands all expandable window items.

Prototype
i nt W ndow. ExpandAl | () ;

Return Value

-1: error
0: success

GUI Access
Window — Context Menu — Expand All (Alt+Plus)

7.8.5.10 Window.CollapseAll

Collapses all collapsible window items.

Prototype
i nt W ndow. Col | apseAl'l ();

Return Value

-1: error
0: success

GUI Access
Window — Context Menu — Collapse All (Alt+Minus)

7.8.6 Toolbar Actions

7.8.6.1 Toolbar.Show
Displays a toolbar (see Showing and Hiding Toolbars on page 42).

Prototype

i nt Tool bar. Show(const char* sTool bar);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

221 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

Main Menu — View — Toolbars — Toolbar Name

7.8.6.2 Toolbar.Close
Hides a toolbar (see Showing and Hiding Toolbars on page 42).

Prototype
i nt Tool bar. Show(const char* sTool bar);
Return Value

-1: error
0: success

GUI Access

Main Menu — View — Toolbars — Toolbar Name

7.8.7 Show Actions

7.8.7.1 Show.Memory

Displays a memory location within the Memory Window (see Memory Window on page 105).
Prototype

i nt Show. Menory(unsi gned i nt Address);

Return Value

-1: error
0: success

GUI Access
Memory Window — Context Menu — Go To (Ctrl+G)

7.8.7.2 Show.Source

Displays the source code location of a variable, function or machine instruction within the
Source Viewer (see Source Viewer on page 121).

Prototype

i nt Show. Source(const char* sLocation);

Argument Meaning

Variable Name: displays the source code declaration of a variable.
Function Name: displays the source code implementation of a func-
sLocation tion.

Memory Address: displays the source line affiliated with an instruc-
tion.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

222

CHAPTER 7 User Actions

Argument Meaning

Source Location: displays a particular source location (see Source
Code Location Descriptor on page 182).

Return Value

-1: error
0: success

GUI Access

Symbol Windows — Context Menu — Show Source (Ctrl+U)

7.8.7.3 Show.Data

Displays the data location of a global or local program variable within the Registers Window
(see Registers Window on page 114) or the Memory Window (see Memory Window on
page 105).

Prototype
i nt Show. Dat a(const char* sVari abl e);
Return Value

-1: error
0: success

GUI Access
Symbol Windows — Context Menu — Show Data (Ctrl+T)

7.8.7.4 Show.Disassembly

Displays the assembly code of a function or source code statement within the Disassembly
Window (see Disassembly Window on page 90).

Prototype

i nt Show. Di sassenbl y(const char* slLocation);

Argument Meaning

Function Name: displays the disassembly of a function.

Memory Address: displays the disassembly at a memory location.
Source Location: displays the disassembly of a source statement (see
Source Code Location Descriptor on page 182).

sLocation

Return Value

-1: error
0: success

GUI Access

Symbol Windows — Context Menu — Show Disassembly (Ctrl+D)

7.8.7.5 Show.CallGraph

Displays the call graph of a function.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

223 CHAPTER 7 User Actions

Prototype
i nt Show. Cal | Graph (const char* sFuncNane);
Return Value

-1: error
0: success

GUI Access

— Source Viewer — Context Menu — Show Call Graph (Ctrl+H)

7.8.7.6 Show.InstTrace

Displays a position in the history (stack) of executed machine instructions.

Prototype
i nt Show. I nstTrace (int StackPos);
Argument Meaning
StackPos Position 1 = most recently executed machine instruction.

Return Value

-1: error
0: success

GUI Access

Instruction Trace Window — Context Menu — Go To

7.8.7.7 Show.Line

Displays a text line in the active document.

Prototype

i nt Show. Li ne(unsi gned int Line);

Return Value

-1: error
0: success

GUI Access

Source Viewer — Context Menu — Go To Line (Ctri+L)

7.8.7.8 Show.PC

Displays the program’s execution point within the Disassembly Window (see Disassembly
Window on page 90).

Prototype
i nt Show. PC();

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

224

0: success

GUI Access

CHAPTER 7

User Actions

Disassembly Window — Context Menu — Go To PC (Ctrl+P)

7.8.7.9 Show.PCLine

Displays the program’s execution point within the Source Viewer (see Source Viewer on

page 121).
Prototype

i nt Show. PCLi ne();

Return Value

-1: error
0: success

GUI Access

Source Viewer — Context Menu — Go To PC (Ctrl+P)

7.8.7.10 Show.NextResult

Displays the next search result.

Prototype
i nt Show. Next Resul t ();
Return Value

-1: error
0: success

GUI Access

None

7.8.7.11 Show.PrevResult

Displays the previous search result.

Prototype
i nt Show. PrevResult ();
Return Value

-1: error
0: success

GUI Access

None.

7.8.8 Utility Actions

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

225 CHAPTER 7 User Actions

7.8.8.1 Util.Sleep

Pauses the current operation for a given amount of time.

Prototype

int Util.Sleep(int mlliseconds);

Return Value

-1: error
0: success

GUI Access

None

7.8.8.2 Util.Log

Prints a message to the Console Window (see Console Window on page 82).

Prototype

int Uil.Log(const char* sMessage);

Return Value

-1: error
0: success

GUI Access

None

7.8.8.3 Util.LogHex

Appends an integer value to a text message and prints the result to the Console Window
(see Console Window on page 82).

Prototype

int Uil.LogHex(const char* sMessage, unsigned int IntValue);

Return Value

-1: error
0: success

GUI Access

None

7.8.9 Script Actions

7.8.9.1 Script.Exec

Executes a project file script function. The command currently only supports script functions
with void parameter or with up to seven arguments of type __int64.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

226

CHAPTER 7 User Actions

Prototype
int Script.Exec(const char* sFuncName, _ int64 Paral, _ int64 Para2,..);

Return Value

Return value of the executed function (-1 if execution failed).

GUI Access

None

7.8.9.2 Script.DefineConst

Defines a constant integer value to be used within the project file script.

Prototype

int Script.DefineConst(const char* sNane, const char* sExpression);

Argument Meaning

sName Name of the constant.

Symbol expression that evaluates to a numeric value of size £ 8
sExpression bytes (see Working With Expressions on page 154). The symbol ex-
pression cannot contain local variables.

Return Value

-1: error
0: success

GUI Access

None

7.8.10 Debug Actions

7.8.10.1 Debug.Start

Starts the debug session (see Starting the Debug Session on page 139). The startup routine
can be reprogrammed (see TargetConnect on page 170).

Prototype
i nt Debug. Start();
Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Start Debugging (F5)

7.8.10.2 Debug.Stop

Closes the debug session (see Closing the Debug Session on page 165).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

227

CHAPTER 7 User Actions

Prototype
i nt Debug. St op();
Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Stop Debugging (Shift+F5)

7.8.10.3 Debug.Disconnect

Disconnects the debugger from the target.

Prototype
i nt Debug. Di sconnect ();
Return Value

-1: error
0: success

GUI Access

None

7.8.10.4 Debug.Connect

Establishes a J-Link connection to the target and starts the debug session in the default way.
A reprogramming of the startup procedure via script function “Target- Connect” is ignored.

Prototype
i nt Debug. Connect ();
Return Value

-1: error
0: success

GUI Access

None

7.8.10.5 Debug.SetConnectMode

Sets the connection mode (see Connection Mode on page 139).

Prototype
i nt Debug. Set Connect Mbde(i nt Mode);

Argument Meaning

Mode Connection mode (see Connection Modes on page 185).

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

228 CHAPTER 7 User Actions

0: success

GUI Access

None

7.8.10.6 Debug.Continue

Resumes program execution (see Resume on page 144).

Prototype
i nt Debug. Conti nue();
Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Continue (F5)

7.8.10.7 Debug.Halt

Halts program execution (see Halt on page 144).

Prototype
i nt Debug. Halt();
Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Halt (Ctrl+F5)

7.8.10.8 Debug.Reset

Resets the target and the debuggee (see Reset on page 143). The reset operation can be
customized via the scripting interface (see TargetReset on page 170).

Prototype
i nt Debug. Reset ();

Argument Meaning
Mode Reset mode (see Reset Modes on page 185).

Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Reset (F4)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

229 CHAPTER 7 User Actions

7.8.10.9 Debug.SetResetMode

Sets the reset mode. The reset mode determines how the program is reset (see Reset Mode
on page 143).

Prototype

i nt Debug. Set Reset Mode(i nt Mbode);

Return Value

-1: error
0: success

GUI Access

None

7.8.10.10 Debug.Steplinto

Steps into the current subroutine (see Step on page 143).

Prototype
i nt Debug. Steplnto();

Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Step Into (F11)

7.8.10.11 Debug.StepOver

Steps over the current subroutine (see Step on page 143).

Prototype
i nt Debug. St epQver();

Return Value

-1: error
0: success

GUI Access
Main Menu — Debug — Step Over (F12)

7.8.10.12 Debug.StepOut

Steps out of the current subroutine. (see Step on page 143).

Prototype
i nt Debug. StepQut ();

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

230 CHAPTER 7 User Actions

0: success

GUI Access
Main Menu — Debug — StepOut (Shift+F11)

7.8.10.13 Debug.SetNextPC

Sets the execution point to a particular machine instruction (see Execution Point on
page 148).

Prototype

i nt Debug. Set Next PC(unsi gned i nt Address);

Return Value

-1: error
0: success

GUI Access
Disassembly Window — Context Menu — Set Next PC (Shift+F10)

7.8.10.14 Debug.SetNextStatement

Sets the execution point to a particular source code line (see Execution Point on page 148).

Prototype
i nt Debug. Set Next St at ement (const char* sStatenent);

Argument Meaning

Function Name: displays the first source line of a function.
sStatement Source Location: displays a particular source location (see Source
Code Location Descriptor on page 182).

Return Value

-1: error
0: success

GUI Access

Source Viewer — Context Menu — Set Next Statement (Shift+F10)

7.8.10.15 Debug.RunTo

Advances the program execution point to a particular source code line, function or instruc-
tion address (see Execution Point on page 148).

Prototype

i nt Debug. RunTo(const char* sLocation);

Argument Meaning

Function Name: advances program execution to the first source line
of a function.

Memory Address: advances program execution to a particular instruc-
tion address.

sStatement

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

231

CHAPTER 7 User Actions

Argument Meaning

Source Location: advances program execution to a particular source
code line (see Source Code Location Descriptor on page 182).

Return Value

-1: error
0: success

GUI Access
Code Window — Context Menu — Run To Cursor (Ctrl+F10)

7.8.10.16 Debug.Download

Downloads the debuggee to the target (see Program Files on page 138). The download
operation can be reprogrammed (see TargetDownload on page 170).

Prototype
i nt Debug. Downl oad();
Return Value

-1: error
0: success

GUI Access

None

7.8.10.17 Debug.ReadIntolnstCache

Initializes the instruction cache with target memory data (see Setting Up The Instruction
Cache on page 160).

Prototype
i nt Debug. Readl nt ol nst Cache(U32 Address, U32 Size);

Argument Meaning
Start address of the target memory block to be read into the instruc-
Address .
tion cache.
Size Byte size of the target memory block to be read into the instruction

cache.

Return Value

-1: error
0: success

GUI Access

None

7.8.10.18 Debug.IsHalted

Queries the program state.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

232 CHAPTER 7

Prototype
i nt Debug. |sHalted();

Return Value

0: Program is running
1: Program is halted

GUI Access

None

7.8.11 Help Actions

7.8.11.1 Help.About
Shows the About Dialog.

Prototype
i nt Hel p. About ();
Return Value

-1: error
0: success

GUI Access
Main Menu — Help — About

7.8.11.2 Help.Manual

User Actions

Opens Ozone’s user manual within the default PDF viewer.

Prototype
i nt Hel p. Manual () ;
Return Value

-1: error
0: success

GUI Access
Main Menu — Help — User Guide (F1)

7.8.11.3 Help.Commands

Prints the command help to the Console Window (see Command Help on page 83)

Prototype
i nt Hel p. Commands() ;

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025)

© 2013-2019 SEGGER Microcontroller GmbH

233 CHAPTER 7 User Actions

GUI Access
Main Menu — Help — Commands (Shift+F1)

7.8.12 Project Actions

7.8.12.1 Project.SetDevice
Specifies the target device (see J-Link Settings Dialog on page 61).

Prototype
i nt Project. SetDevice(const char* sDevi ceNane) ;
Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — J-Link Settings (Ctrl+Alt+1J)

7.8.12.2 Project.SetHostIF

Specifies the host interface (see Host Interfaces on page 184).

Prototype

int Project.SetHostlF(const char* sHostlF, const char* sHostlD);
Argument Meaning

sHostIF Host interface (see Host Interfaces on page 184).

sHostID Host identifier (USB serial number or IP address).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — J-Link Settings (Ctrl+Alt+1])

7.8.12.3 Project.SetTargetlF

Specifies the target interface (see Target Interfaces on page 184).

Prototype
int Project.SetTargetl F(const char* sTargetlF);
Argument Meaning
sTargetlF Target interface (see Target Interfaces on page 184).

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

234 CHAPTER 7 User Actions

0: success

GUI Access
Main Menu — Tools — J-Link Settings (Ctrl+Alt+1])

7.8.12.4 Project.SetTIFSpeed
Specifies the target interface speed (see J-Link Settings Dialog on page 61).

Prototype
i nt Project. SetTlFSpeed(const char* sFrequency);

Argument Meaning

sFrequency Frequency Descriptor (see Frequency Descriptor on page 182).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — J-Link Settings (Ctrl+Alt+1])

7.8.12.5 Project.SetJTAGConfig

Configures the JTAG target interface scan chain parameters.

Prototype
int Project.SetJTACConfig(int DRPre, int IRPre);
Argument Meaning
DRPre Position of the target in the JTAG scan chain. 0 is closest to TDO.
IRPre Sums of IR-Lens of devices closer to TDO. IRLen of ARM devices is 4.

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — J-Link Settings (Ctrl+Alt+1])

7.8.12.6 Project.SetBPType

Sets the permitted breakpoint implementation type, i.e. restricts breakpoints to be imple-
mented in the way specified by the command argument.

Prototype
int Project.SetBPType(int Type);

Argument Meaning

Breakpoint Implementation Types (see Breakpoint Implementation

Type Types on page 185).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

235 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

Main Menu — Tools — System Variables (Ctrl+Alt+V)

7.8.12.7 Project.SetCorePlugin

Sets the file path of the plugin that provides target support (see Target Support Plugins
on page 24. Applying this setting causes the debugger’s automatic plugin selection to be
overridden.

Prototype
i nt Project. SetCorePl ugi n(const char* sFil ePath);

Argument Meaning

Plugin file path or name. Valid plugin file extensions are .dll on Win-
sFilePath dows, .so on linux and .dylib on macOS. The file path may be speci-
fied case-insensitively.

Return Value

-1: error
0: success

GUI Access

None

7.8.12.8 Project.SetOSPlugin
Specifies the file path or name of the plugin that adds RTOS awareness to the debugger.

Prototype
i nt Project.SetGSPl ugi n(const char* sFil ePath);

Argument Meaning

Plugin file path or name. Use argument enbQOSPI ugi n to configure
embOS awareness, Fr eeRTOSPI ugi n_<port > to configure FreeRTOS
awareness and Chi bi GSPI ugi n to configure ChibiOS awareness. Valid
plugin file extensions are .js on all platforms, .dll on Windows, .so on
Linux and .dylib on macOS. The file path may be specified case-insen-
sitively. The file extension may be omitted.

sFilePath

Additional Description

Users of FreeRTOS are required to select the plugin version that matches their target ar-

chitecture:
MCU Architecture File Name
Legacy-ARM Fr eeRTOSPI ugi n_ARM
Cortex-MO Fr eeRTOSPI ugi n_CMD
Cortex-M3 Fr eeRTOSPI ugi n_CMVB

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

236

CHAPTER 7 User Actions
MCU Architecture File Name
Cortex-M4 Fr eeRTOSPI ugi n_Cw4
Cortex-M7 Fr eeRTOSPI ugi n_Cw
Cortex-A9 Fr eeRTOSPI ugi n_CA9

A programming guide for RTOS plugins is provided by section RTOS Awareness Plugin on
page 172.

7.8.12.9 Project.SetRTT

Enables or disables the Real-Time Transfer (RTT) IO interface (see Real-Time Transfer on
page 153).

Prototype
int Project.SetRTT(int OnOFf);
Return Value

-1: error
0: success

GUI Access

Terminal Window — Context Menu — Capture RTT

7.8.12.10 Project.AddRTTSearchRange

Configures the Real-Time Transfer (RTT) IO interface (see Real-Time Transfer on page 153).
This command makes it possible to use RTT (and only needs to be supplied) when both:

e Ozone (J-Link) has no information about the target’s data memory address range and
e the connection mode is "ATTACH"” or "ATTACH HALT".

For further details, refer to the J-Link User Guide .

Prototype
i nt Project. AddRTTSear chRange(U32 StartAddr, U32 Size);

Argument Meaning

StartAddr —
Size

Address range to be considered in the RTT buffer localization routine.

Return Value

-1: error
0: success

GUI Access

None

7.8.12.11 Project.SetTraceSource

Selects the trace source to be used.

Prototype

i nt Project.SetTraceSource(const char* sTraceSrc);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-sdk.html

237 CHAPTER 7 User Actions

Argument Meaning

Display name of the trace source to be used (see Trace Sources on

sTraceSrc page 186).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Trace Settings (Ctrl+Alt+T)

7.8.12.12 Project.SetSemihosting

Enables or disables the Semihosting 10 interface (see Semihosting on page 153).

Prototype
i nt Project. SetSem hosting(int OnOff);

Return Value

-1: error
0: success

GUI Access

Main Menu — Tools — System Variables (Ctrl+Alt+V)

7.8.12.13 Project.ConfigSemihosting

Configures the Semihosting IO interface (see Semihosting on page 153).

Prototype

i nt Project. ConfigSem hosting(const char* sConfig);

Argument Meaning

Configuration string of the format “settingl=value,setting2=value...”.

sConfig The valid settings are architecture-dependent and described below.

ARM

Setting Meaning

Semihosting vector address. The debugger will set a breakpoint on
this address in order to catch Semihosting requests by the debuggee
via the SWI instruction. The default value for this parameter is the
SWI exception vector (0x8). In case the debuggee makes pronounced
use of SWI'’s that are not Semihosting requests, it will be advanta-
geous to set the Semihosting vector to an instruction within a cus-
tomized SWI handler. Please refer to the ARM ADS debug target
guide for further information.

Indicates if the debuggee issues Semihosting requests via SWI. The
default value of this parameter is 1. When set to 0, the debugger will
UseSVC not set a breakpoint on the Semihosting vector. This can potentially
improve the run performance of the debuggee whilst using Semihost-
ing.

Vector

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

238 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

None

7.8.12.14 Project.SetTracePortWidth

Specifies the number of trace pins (data lines) comprising the target’s trace port. This set-
ting is only relevant when the selected trace source is “Trace Pins” / ETM (see Project.Set-
TraceSource on page 236).

Prototype
int Project.SetTracePortWdth(int PortWdth);
Argument Meaning
PortWidth TU?BS;Of trace data lines provided by the target. Possible values are

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Trace Settings (Ctrl+Alt+T)

7.8.12.15 Project.SetTraceTiming

This command adjusts the trace pin sampling delays. The delays may be necessary in case
the target hardware does not provide sufficient setup and hold times for the trace pins.
In such cases, delaying TCLK can compensate this and make tracing possibly anyhow.
This setting is only relevant when the selected trace source is “Trace Pins” / ETM (see
Project.SetTraceSource on page 236).

Prototype
int Project.SetTraceTimng(int dil, int d2, int d3, int d4);

Argument Meaning

d Trace data pin n sampling delay in picoseconds. Only the first para-
n .
meters are relevant when your hardware has less than 4 trace pins.

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Trace Settings (Ctrl+Alt+T)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

239 CHAPTER 7 User Actions

7.8.12.16 Project.ConfigSWO

Configures the Serial Wire Output (SWO) IO interface (see SWO on page 153). This setting
is only relevant when the selected trace source is SWO (see Project.SetTraceSource on
page 236).

Prototype
i nt Project.ConfigSWO(const char* sSWOFreq, char* sCPUFreq);

Argument Meaning

Specifies the data transmission speed on the SWO interface (see Fre-

sSWOFreq quency Descriptor on page 182).

Specifies the target’s processor frequency (see Frequency Descriptor

SCPUFreq on page 182).

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — Trace Settings (Ctrl+Alt+T)

7.8.12.17 Project.SetMemZoneRunning

Specifies the default memory zone that is accessed when the program is running. The de-
bugger uses this memory zone for any memory access that has not been explicitly assigned
to a particular memory zone.

Prototype

i nt Project. Set MenZoneRunni ng(const char* sMenoryZone);

Argument Meaning

sMemoryZone Name of the default memory zone

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — System Variables (Ctrl4+Alt+V)

7.8.12.18 Project.AddSvdFile

Adds a register set description file to be loaded by the Registers Window (see SVD Files
on page 114).

Prototype
i nt Project.AddSvdFil e(const char* sFil ePath);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

240 CHAPTER 7 User Actions

Argument Meaning

Path to a CMSIS-SVD file. Both .svd and .xml file extensions are sup-
sFilePath ported. The file path may contain directory macros (see Directory
Macros on page 194).

Return Value

-1: error
0: success

GUI Access

None

7.8.12.19 Project.AddFileAlias
Adds a file path alias (see File Path Resolution Sequence on page 156).

Prototype

int Project.AddFil eAlias(const char* sFilePath, const char* sAliasPath);
Argument Meaning

sFilePath Original file path as it appears within the program file or elsewhere.

sAliasPath Replacement for the original file path.

Return Value

-1: error
0: success

GUI Access

Source Files Window — Context Menu — Locate File (Space)

7.8.12.20 Project.AddRootPath

Adds a source file root path. The root path helps the debugger resolve relative file path
arguments (see File Path Resolution Sequence on page 156). Typically a project will have
a single source file root path.

Prototype
i nt Project. SetRoot Pat h(const char* sRoot Pat h);

Argument Meaning

sRootPath Fully qualified path of a file system directory.

Return Value

-1: error
0: success

GUI Access

None

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

241 CHAPTER 7 User Actions

7.8.12.21 Project.AddPathSubstitute

Replaces a substring within unresolved source file path arguments (see File Path Resolution
Sequence on page 156).

Prototype

i nt Project.AddPat hSubstitute(const char* sSubStr, const char* sAlias);
Argument Meaning

sSubStr Substring (directory name) within original file paths.

sAlias Replacement for the given substring.

Return Value

-1: error
0: success

GUI Access

None

7.8.12.22 Project.AddSearchPath

Adds a directory to the list of search directories. Search directories help the debugger
resolve invalid file path arguments (see File Path Resolution Sequence on page 156).

Prototype

i nt Project.AddSear chPat h(const char* sSear chPat h);
Argument Meaning

sSearchPath Fully qualified path of a file system directory.

Return Value

-1: error
0: success

GUI Access

None

7.8.12.23 Project.SetJLinkScript

Specifies the J-Link script file that is to be executed at the moment the debug session is
started. Refer to the J-Link User Guide for on overview on J-Link script files.

Prototype
int Project.SetJLinkScript(const char* sFil ePath);

Argument Meaning
. Path to a J-Link script file. The file path may contain directory macros
sFilePath .
(see Directory Macros on page 194).

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-sdk.html

242 CHAPTER 7 User Actions

GUI Access

None

7.8.12.24 Project.SetJLinkLogFile
Specifies the text file that receives J-Link logging output.

Prototype
int Project.SetJLi nkLogFil e(const char* sFilePath);

Argument Meaning

Path to a text file. The file path may contain directory macros (see Di-

sFilePath rectory Macros on page 194).

Return Value

-1: error
0: success

GUI Access

None

7.8.12.25 Project.RelocateSymbols

Relocates one or multiple symbols.

Prototype
i nt Project.Rel ocat eSynbol s(const char* sSynbols, int Ofset);

Argument Meaning

Specifies the symbols to be relocated. The wildcard character “*” se-
sSymbols lects all symbols. A symbol name specifies a single symbol. A section
name such as “.text” specifies a particular ELF data section.

The offset that is added to the base addresses of all specified sym-
Offset bols

Return Value

-1: error
0: success

GUI Access

None

7.8.12.26 Project.SetConsoleLogFile

Sets the text file to which Console Window messages are logged.

Prototype

i nt Project. SetConsol eLogFil e(const char* sFil ePath);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

243 CHAPTER 7 User Actions

Argument Meaning

Logfile. The file path may contain directory macros (see Directory

sFilePath Macros on page 194).

Return Value

-1: error
0: success

GUI Access

None

7.8.12.27 Project.SetTerminalLogFile

Sets the text file to which Terminal Window messages are logged.

Prototype
i nt Project.SetTerni nal LogFil e(const char* sFil ePath);
Argument Meaning
. Logfile. The file path may contain directory macros (see Directory
sFilePath
Macros on page 194).

Return Value

-1: error
0: success

GUI Access

None

7.8.12.28 Project.DisableSessionSave

Selects session information that is not to be saved to the user file.

Prototype

i nt Project.Di sabl eSessi onSave(unsi gned int Fl ags);

Argument Meaning

Bitwise-OR combination of individual flags. Each flag specifies a ses-
sion information that is not to be saved to (and restored from) the
user file. Refer to Session Save Flags on page 187 for the list of sup-
ported flags.

Flags

Return Value

-1: error
0: success

GUI Access

None

7.8.13 Code Profile Actions

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

244 CHAPTER 7 User Actions

7.8.13.1 Profile.Exclude

Filters program entities from the code profile (load) statistic. The code profile statistic is
re-evaluated as if the filtered items had never belonged to the program.

Prototype

int Profile.Exclude (const char* sFilter);

Argument Meaning

Specifies the items to be filtered. All items that exactly match the fil-
ter string are moved to the filtered set. Wildcard (*) characters can
be placed at the front or end of the filter string to perform partial
match filtering.

sFilter

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Exclude...

7.8.13.2 Profile.Include

Re-adds filtered items to the code profile load statistic.

Prototype

int Profile.Include (const char* sFilter);

Argument Meaning

Specifies the items to be unfiltered. All items that exactly match the
filter string are removed from the filtered set. Wildcard (*) characters
can be placed at the front or end of the filter string to perform partial
match unfiltering.

sFilter

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Include...

7.8.13.3 Coverage.Exclude

Filters program entities from the code coverage statistic. The code coverage statistic is re-
evaluated as if the filtered items had never belonged to the program.

Prototype

i nt Coverage. Excl ude (const char* sFilter);

Argument Meaning

Specifies the items to be filtered. All items that exactly match the fil-

sFilter ter string are moved to the filtered set. Wildcard (*) characters can

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

245

CHAPTER 7 User Actions

Argument Meaning

be placed at the front or end of the filter string to perform partial
match filtering.

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Exclude...

7.8.13.4 Coverage.Include

Re-adds filtered items to the code coverage statistic.

Prototype

i nt Coverage.lnclude (const char* sFilter);

Argument Meaning

Specifies the items to be unfiltered. All items that exactly match the
filter string are removed from the filtered set. Wildcard (*) characters
can be placed at the front or end of the filter string to perform partial
match unfiltering.

sFilter

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Include...

7.8.13.5 Coverage.ExcludeNOPs

Excludes instructions without operation (alignment instructions) from the code coverage
statistics.

Prototype
i nt Cover age. Excl udeNOPs ();
Return Value

-1: error
0: success

GUI Access
Code Profile Window — Context Menu — Exclude All NOP Instructions...

7.8.13.6 Profile.Export

Exports the current code profile dataset to a text file (as a human-readable report).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

246 CHAPTER 7 User Actions

Prototype
int Profile.Export (const char* sFilePath, int Options);

Argument Meaning

sFilePath Destination text file.

bitwise-OR combination of export option flags (see Code Profile Ex-

Options port Options on page 187). Use value 0 to specify default options.

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Export...

7.8.13.7 Profile.ExportCSV

Exports the current code profile dataset to a CSV file.

Prototype
int Profile. ExportCSV (const char* sFilePath, int Format, int Options);

Argument Meaning
sFilePath Destination CSV file.
Format Specifies which program entities are be exported to the CSV file (see
Code Profile Export Formats on page 187)
. bitwise-OR combination of export option flags (see Code Profile Ex-
Options

port Options on page 187). Use value 0 to specify default options.

Return Value

-1: error
0: success

GUI Access

Code Profile Window — Context Menu — Export...

7.8.14 Target Actions

7.8.14.1 Target.SetReg

Writes a target register (see Target Registers on page 149).

Prototype

i nt Target. Set Reg(const char* sRegNane, unsigned int Value);

Argument Meaning
Name of a core, FPU or coprocessor register (see Coprocessor Regis-
sRegName .
ter Descriptor on page 183).
Value Register value to write.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

247 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access

Register Window — Register

7.8.14.2 Target.GetReg

Reads a target register (see Target Registers on page 149).

Prototype
U32 Target. Get Reg(const char* RegNane);

Argument Meaning

Name of a core, FPU or coprocessor register (see Coprocessor Regis-

sRegName ter Descriptor on page 183).

Return Value

-1: error
register value: success

GUI Access

Register Window — Register

7.8.14.3 Target.WriteU32

Writes a word to target memory (see Target Memory on page 149).

Prototype
int Target.WiteU32(U32 Address, U32 Val ue);

Return Value

-1: error
0: success

GUI Access

Memory Window

7.8.14.4 Target.WriteU16

Writes a half word to target memory (see Target Memory on page 149).

Prototype
int Target.WiteUl6(U32 Address, Ul6 Val ue);

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

248 CHAPTER 7 User Actions

GUI Access

Memory Window

7.8.14.5 Target.WriteU8

Writes a byte to target memory (see Target Memory on page 149).

Prototype
int Target.WiteU8(U32 Address, U8 Val ue);
Return Value

-1: error
0: success

GUI Access

Memory Window

7.8.14.6 Target.ReadU32

Reads a word from target memory (see Target Memory on page 149).

Prototype
U32 Target. ReadU32(U32 Address);

Return Value

-1: error
Memory value: success

GUI Access

Memory Window

7.8.14.7 Target.ReadU1l6

Reads a half word from target memory (see Target Memory on page 149).

Prototype
Ul6 Target. ReadUl6(U32 Address);

Return Value

-1: error
Memory value: success

GUI Access

Memory Window

7.8.14.8 Target.ReadUS8

Reads a byte from target memory (see Target Memory on page 149).

Prototype
U32 Target. ReadU3(U32 Address);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

249 CHAPTER 7 User Actions

Return Value

-1: error
Memory value: success

GUI Access

Memory Window

7.8.14.9 Target.SetAccessWidth

Specifies the default access width to be used when accessing target memory (see Tar-
get.SetAccessWidth on page 249).

Prototype
i nt Target. Set AccessWdt h(U32 AccessW dt h);
Argument Meaning
AccessWidth Memory access width (See Memory Access Widths on page 184).

Return Value

-1: error
0: success

GUI Access

Main Menu — Tools — System Variables (Ctrl+Alt+V)

7.8.14.10 Target.FillMemory

Fills a block of target memory with a particular value (see Target. FillMemory on page 249).

Prototype

int Target.Fill Menory(U32 Address, U32 Size, U8 Fill Val ue);
Argument Meaning

Address Start address of the memory block to fill.

Size Size of the memory block to fill.

FillValue Value to fill the memory block with.

Return Value

-1: error
0: success

GUI Access
Memory Window — Context Menu — Fill (Ctrl+I)

7.8.14.11 Target.SaveMemory

Saves a block of target memory to a binary data file (see Target.SaveMemory on
page 249).

Prototype
i nt Target. SaveMenory(const char* sFilePath, U32 Address, U32 Size);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

250 CHAPTER 7 User Actions

Argument Meaning
sFilePath Fully qualified path of the destination binary data file (*.bin).
Address Start address of the memory block to save to the destination file.
Size Size of the memory block to save to the destination file.

Return Value

-1: error
0: success

GUI Access

Memory Window — Context Menu — Save

7.8.14.12 Target.LoadMemory

Downloads the contents of a binary data file to target memory (see Download Behavior
Comparison on page 151).

Prototype
i nt Target.LoadMenory(const char* sFilePath, U32 Address);

Argument Meaning

Path to the binary data file (*.bin). The file path may contain directo-

sFilePath ry macros (see Directory Macros on page 194).

Address Download address.

Return Value

-1: error
0: success

GUI Access

Memory Window — Context Menu — Load

7.8.14.13 Target.SetEndianess

Sets the data endianness mode of the target.

Prototype
i nt Target. Set Endi aness(i nt Bi gEndi an);
Argument Meaning
BigEndian When 0, little endian is selected. Otherwise, big endian is selected.

Return Value

-1: error
0: success

GUI Access
Main Menu — Tools — J-Link-Settings — Target Device (Ctrl+Alt+1])

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

251 CHAPTER 7 User Actions

7.8.14.14 Target.SetFPU

Indicates to the debugger if the target contains a floating point unit, thereby enabling or
disabling implicit floating pointer register accesses.

This setting overrides the default FPU status which is automatically determined when a
target connection is established.

Prototype
i nt Target. Set FPU(i nt YesNo);

Argument Meaning

When set to 0, the debugger cannot access floating point registers
YesNo when not explicitly triggered by the user. When set to 1, the debugger
can access floating point registers without restriction.

Return Value

-1: error
0: success

GUI Access

None

7.8.14.15 Target.LoadMemoryMap

Initializes the target’'s memory map from the contents of a memory map file. The initialized
memory map can be observed using the Memory Usage Window on page 109.

Prototype
i nt Target.LoadMenoryMap(const char* sFil ePath);

Argument Meaning

Path to a memory map file. Currently, the only supported file format

sFilePath is SEGGER Embedded Studio.

Return Value

-1: error
0: success

GUI Access

Memory Usage Window — Context Menu — Edit Segments

7.8.14.16 Target.AddMemorySegment

Adds a segment to the target’s memory map (see Supplying Segment Information on

page 110).

Prototype

i nt Target.AddMenor ySegnent (const char* sNanme, U32 Addr, U32 Size);
Argument Meaning

sName Segment name.

Addr Segment base address.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

252

CHAPTER 7 User Actions

Argument Meaning

Size Segment byte size.

Return Value

-1: error
0: success

GUI Access

Memory Usage Window — Context Menu — Edit Segments

7.8.15 J-Link Actions

7.8.15.1 Exec.Connect

Establishes a J-Link connection to the target (see DebugStart on page 169).

Prototype
i nt Exec. Connect ();
Return Value

-1: error
0: success

GUI Access

None

7.8.15.2 Exec.Reset

Performs a hardware reset of the target (see DebugStart on page 169).

Prototype
i nt Exec.Reset();
Return Value

-1: error
0: success

GUI Access

None

7.8.15.3 Exec.Download

Downloads the contents of a program or data file to target memory (see DebugStart on
page 169 and Download Behavior Comparison on page 151).

Prototype

i nt Exec. Downl oad(const char* sFil ePath);

Return Value

-1: error

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

253 CHAPTER 7 User Actions

0: success

GUI Access

None

7.8.15.4 Exec.Command

Executes a J-Link command.

Prototype
i nt Exec. Command(const char* sCommand);
Argument Meaning
J-Link command to execute (refer to the J-Link User Guide for on
sCommand) ;
overview on the available commands).

Return Value

-1: error
0: success

GUI Access

None

7.8.16 OS Actions

7.8.16.1 0OS.AddContextSwitchSymbol

Specifies a function or program instruction that performs a task switch when executed. This
command can be used to enable a consistent output within the Timeline Window even when
no RTOS Awareness Plugin was loaded (see Timeline Window on page 128).

Prototype
i nt OS. AddCont ext Swi t chSynbol (const char* sSynbol);
Argument Meaning
sSymbol Function name, assembly label or instruction address.

Return Value

-1: error
0: success

GUI Access

None

7.8.17 Breakpoint Actions

7.8.17.1 Break.Set

Sets an instruction breakpoint (see Instruction Breakpoints on page 145).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-sdk.html

254 CHAPTER 7 User Actions

Prototype
i nt Break. Set (U32 Address);
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set / Clear (Ctrl+Alt+B)

7.8.17.2 Break.SetEx

Sets an instruction breakpoint of a particular implementation type (see Instruction Break-
points on page 145).

Prototype
i nt Break. Set Ex(U32 Address, int Type);
Argument Meaning
Address Instruction address.
T Breakpoint Implementation Types (see Breakpoint Implementation
ype
Types on page 185).

Return Value

-1: error
0: success

GUI Access

None

7.8.17.3 Break.SetOnSrc

Sets a source breakpoint (see Source Breakpoints on page 145).

Prototype

i nt Break.SetOnSrc(const char* sLocation);

Argument Meaning

Function Name: displays the first source line of a function.
sLocation Source Location: displays a particular source location (see Source
Code Location Descriptor on page 182).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set / Clear (Ctrl+Alt+B)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

255 CHAPTER 7 User Actions

7.8.17.4 Break.SetOnSrcEx

Sets a source breakpoint of a particular implementation type (see Source Breakpoints on
page 145).

Prototype

i nt Break.SetOnSrc(const char* sLocation, int Type);

Argument Meaning

Function Name: displays the first source line of a function.
sLocation Source Location: displays a particular source location (see Source
Code Location Descriptor on page 182).

Breakpoint Implementation Types (see Breakpoint Implementation

Type Types on page 185).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set / Clear (Ctrl+Alt+B)

7.8.17.5 Break.SetType

Sets a breakpoint’s permitted implementation type (see Breakpoint Implementation Types
on page 185).

Prototype

i nt Break. Set Type(const char* sLocation, int Type);

Argument Meaning
Location of the breakpoint as displayed within the first column of
sLocation the Breakpoint Window (see Breakpoints/Tracepoints Window on
page 72).

Breakpoint Implementation Types (see Breakpoint Implementation

Type Types on page 185).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Edit (F8)

7.8.17.6 Break.Clear

Clears an instruction breakpoint (see Instruction Breakpoints on page 145).

Prototype
i nt Break.C ear(U32 Address);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

256 CHAPTER 7 User Actions

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set / Clear (Ctrl+Alt+B)

7.8.17.7 Break.ClearOnSrc

Clears a source breakpoint (see Source Breakpoints on page 145).

Prototype

i nt Break.C earOnSrc(const char* slLocation);

Parameter Description
Refer to Break.SetOnSrc on page 254.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set / Clear (Ctrl+Alt+B)

7.8.17.8 Break.Enable

Enables an instruction breakpoint (see Instruction Breakpoints on page 145).

Prototype
i nt Break. Enabl e(U32 Address);
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Enable (Shift+F9)

7.8.17.9 Break.Disable

Disables an instruction breakpoint (see Instruction Breakpoints on page 145).

Prototype
i nt Break. Di sabl e(U32 Address);
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Disable (Shift+F9)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

257 CHAPTER 7 User Actions

7.8.17.10 Break.EnableOnSrc

Enables a source breakpoint (see Source Breakpoints on page 145).

Prototype

i nt Break. Enabl eOnSrc(const char* sLocation);

Parameter Description
Refer to Break.SetOnSrc on page 254.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Enable (Shift+F9)

7.8.17.11 Break.DisableOnSrc

Disables a source breakpoint (see Source Breakpoints on page 145).

Prototype

i nt Break.Di sabl eOnSrc(const char* slLocation);

Parameter Description
Refer to Break.SetOnSrc on page 254.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Disable (Shift+F9)

7.8.17.12 Break.Edit

Edits a breakpoint’s advanced properties.

Prototype

int Break.Edit(const char* slLocation, const char* sCondition, int DoTrig-
ger OnChange, int SkipCount, const char* sTaskFilter, const char* sConsol eMsg,
const char* sMsgBoxMsg);

Argument Meaning
. Location of the breakpoint as displayed within the Breakpoints/Trace-
sLocation : .
points Window.
sCondition Symbol expression that must evaluate to non-zero for the breakpoint
to be triggered (see Working With Expressions on page 154).
DoTriggerOn- Indicates whether the condition is met when the expression value has
Changg changed since the last time it was evaluated (DoTriggerOnChange=1)
9 or when it does not equal zero (DoTriggerOnChange=0).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

258

CHAPTER 7 User Actions

Argument Meaning
SkinCount Indicates how many times the breakpoint is skipped, i.e. how many
P times the program is resumed when the breakpoint is hit.
The name or ID of the RTOS task that triggers the breakpoint. When
sTaskFilter empty, all RTOS tasks trigger the breakpoint. The task filter is on-

ly operational when an RTOS plugin was specified using command
Project.SetOSPlugin.

sConsoleMsg

Message printed to the Console Window when the breakpoint is trig-
gered.

sMsgBoxMsg

Message displayed in a message box when the breakpoint is trig-
gered.

Return Value

-1: error
0: success

GUI Access

Breakpoint Window — Context Menu — Edit (F8)

7.8.17.13 Break.SetOnData
Sets a data breakpoint (see Data Breakpoints on page 147).

Prototype

int Break.Set OnData(U32 Address, U32 AddressMask, U3 AccessType, U3 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Argument

Meaning

Address

Memory address that is monitored for IO (access) events.

AddressMask

Specifies which bits of the address are ignored when monitoring ac-
cess events. By means of the address mask, a single data breakpoint
can be set to monitor accesses to several individual memory address-
es.

AccessType

Type of access that is monitored by the data breakpoint (see Connec-
tion Modes on page 185).

AccessSize

Access size condition required to trigger the data breakpoint. As an
example, a data breakpoint with an access size of 4 bytes (word)
will only be triggered when a word is written to one of the monitored
memory locations. It will not be triggered when, say, a byte is writ-
ten.

MatchValue

Value condition required to trigger the data breakpoint. A data break-
point will only be triggered when the match value is written to or read
from one of the monitored memory addresses.

ValueMask

Indicates which bits of the match value are ignored when monitoring
access events. A value mask of OxFFFFFFFF means that all bits are ig-
nored, i.e. the value condition is disabled.

Return Value

-1: error
0: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

259 CHAPTER 7 User Actions

GUI Access
Breakpoint Window — Context Menu — Set (Ctrl+Alt+D)

7.8.17.14 Break.ClearOnData

Clears a data breakpoint (see Data Breakpoints on page 147).

Prototype

int Break.C earOnData(U32 Address, U32 AddressMask, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnData on page 258.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Clear (Ctrl+Alt+D)

7.8.17.15 Break.ClearAll

Clears all breakpoints (see Data Breakpoints on page 147).

Prototype
int Break.Cl earAll();
Return Value

-1: error
0: success

GUI Access

Breakpoint Toolbar — Clear All Breakpoints

7.8.17.16 Break.ClearAllOnData

Clears all data breakpoints (see Data Breakpoints on page 147).

Prototype
int Break.d earAll OnDat a();

Return Value

-1: error
0: success

GUI Access

Breakpoint Toolbar — Clear All Data Breakpoints

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

260 CHAPTER 7 User Actions

7.8.17.17 Break.EnableOnData

Enables a data breakpoint (see Data Breakpoints on page 147).

Prototype

i nt Break. Enabl eOnDat a(U32 Address, U32 AddressMask, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnData on page 258.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Enable (Shift+F9)

7.8.17.18 Break.DisableOnData
Disables a data breakpoint (see Data Breakpoints on page 147).

Prototype

i nt Break.Di sabl eOnDat a(U32 Address, U32 AddressMask, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnData on page 258.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Disable (Shift+F9)

7.8.17.19 Break.EditOnData
Edits a data breakpoint (see Data Breakpoints on page 147).

Prototype

int Break. EditOnData(U32 Address, U32 AddressMask, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnData on page 258.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Edit (F8)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

261 CHAPTER 7 User Actions

7.8.17.20 Break.SetOnSymbol

Sets a data breakpoint on a symbol (see Data Breakpoints on page 147).

Prototype

i nt Break. Set OnSynbol (const char* sSynbol Name, U8 AccessType, U8 AccessSi ze,
U32 Mat chVal ue, U32 Val ueMask);

Argument Meaning

sSymbolName Name of the symbol that is monitored by the data breakpoint.

Type of access that is monitored by the data breakpoint (see Connec-

AccessType tion Modes on page 185).

Access size condition required to trigger the data breakpoint. As an
example, a data breakpoint with an access size of 4 bytes (word)
AccessSize will only be triggered when a word is written to one of the monitored
memory locations. It will not be triggered when, say, a byte is writ-
ten.

Value condition required to trigger the data breakpoint. A data break-
MatchValue point will only be triggered when the match value is written to or read
from one of the monitored memory addresses.

Indicates which bits of the match value are ignored when monitoring
ValueMask access events. A value mask of OxFFFFFFFF means that all bits are ig-
nored, i.e. the value condition is disabled.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set (Ctrl4+Alt+D)

7.8.17.21 Break.ClearOnSymbol

Clears a data breakpoint on a symbol (see Data Breakpoints on page 147).

Prototype

int Break.C earOnSynbol (const char* sSynbol Nane, U8 AccessType, U8 Ac-
cessSize, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnSymbol on page 261.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Clear (Ctrl+Alt+D)

7.8.17.22 Break.EnableOnSymbol

Enables a data breakpoint on a symbol (see Data Breakpoints on page 147).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

262

CHAPTER 7 User Actions

Prototype

i nt Break. Enabl eOnSynbol (const char* sSynbol Nanme, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnSymbol on page 261.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Enable (Shift+F9)

7.8.17.23 Break.DisableOnSymbol

Disables a data breakpoint on a symbol (see Data Breakpoints on page 147).

Prototype

i nt Break. D sabl eOnSynbol (const char* sSynbol Nane, U8 AccessType, U8 Ac-
cessSi ze, U32 MatchVal ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnSymbol on page 261.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Disable (Shift+F9)

7.8.17.24 Break.EditOnSymbol

Edits a data breakpoint on a symbol (see Data Breakpoints on page 147).

Prototype

i nt Break. Edit OnSynbol (const char* sSynbol Name, U8 AccessType, U8 AccessSi ze,
U32 Mat chVval ue, U32 Val ueMask);

Parameter Description
Refer to Break.SetOnSymbol on page 261.
Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Edit (F8)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

263 CHAPTER 7 User Actions

7.8.17.25 Break.SetCommand

Assigns a script function to a breakpoint that is executed when the breakpoint is hit.

Prototype

i nt Break. Set Conmand (const char* sLocation, const char* sFuncNane);

Argument Meaning
Location of the breakpoint as displayed within the first column of
sLocation the Breakpoint Window (see Breakpoints/Tracepoints Window on
page 72).
sFuncName Name of the script function to callback when the breakpoint is hit.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Edit (F8)

7.8.17.26 Break.SetCmdOnAddr

Assigns a script function to a breakpoint that is executed when the breakpoint is hit.

Prototype

i nt Break. Set CdOnAddr (unsigned int Address, const char* sFuncNane);
Argument Meaning

Address Instruction address.

sFuncName Name of the script function to callback when the breakpoint is hit.

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Edit (F8)

7.8.18 ELF Actions

7.8.18.1 EIf.GetBaseAddr

Returns the program file’s download address.

Prototype
int Elf.GetBaseAddr();

Return Value

-1: error
Base address: success

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

264 CHAPTER 7 User Actions

GUI Access

None

7.8.18.2 EIf.GetEntryPointPC

Returns the initial PC of program execution.

Prototype
int Elf.GetEntryPoint PC();

Return Value

Initial PC of program execution (-1 on error)

GUI Access

None

7.8.18.3 EIf.GetEntryFuncPC

Return the initial PC of the program’s entry (or main) function.

Prototype
int Elf.GetEntryFuncPC();

Return Value

PC of the program entry function (-1 on error)

GUI Access

None

7.8.18.4 EIf.GetExprValue

Evaluates a symbol expression.

Prototype
i nt Elf.Get ExprVal ue(const char* sExpression);

Return Value

-1: error
Expression value: success
GUI Access

Watched Data Window — Context Menu — Add (Alt+Shift+Plus)

7.8.18.5 EIf.GetEndianess

Returns the program file’s data encoding scheme.

Prototype

i nt Elf.Get Endi aness(const char* sExpression);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

265 CHAPTER 7 User Actions

Return Value

0: Little Endian
1: Big Endian

GUI Access

None

7.8.19 Trace Actions

Actions performing trace related operations.

7.8.19.1 Trace.SetPoint

Sets a tracepoint

Prototype

int Trace. SetPoint(int Op, const char* sLocation);

Argument Meaning
0 Operation to be performed when the tracepoint is hit (see Tracepoint
p .
Operation Types on page 186).
. Location of the tracepoint as displayed within the Breakpoints/Trace-
sLocation

points Window (see Breakpoints/Tracepoints Window on page 72)).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Set Tracepoint (Ctrl+Alt+E)

7.8.19.2 Trace.ClearPoint

Clears a tracepoint.

Prototype

int Trace. Set Poi nt (const char* sLocation);

Argument Meaning
sLocation Location of the tracepoint as displayed within the Breakpoints/Trace-
points Window (see Breakpoints/Tracepoints Window on page 72)).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Clear (Ctrl+Alt+E)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

266 CHAPTER 7 User Actions

7.8.19.3 Trace.EnablePoint

Enables a tracepoint.

Prototype

i nt Trace. Enabl ePoi nt (const char* sLocation);

Argument Meaning
sLocation Location of the tracepoint as displayed within the Breakpoints/Trace-
points Window (see Breakpoints/Tracepoints Window on page 72)).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Enable (Shift+F9)

7.8.19.4 Trace.DisablePoint

Disables a tracepoint.

Prototype
i nt Trace. Di sabl ePoi nt (const char* sLocation);
Argument Meaning
sLocation Location of the tracepoint as displayed within the Breakpoints/Trace-
points Window (see Breakpoints/Tracepoints Window on page 72)).

Return Value

-1: error
0: success

GUI Access
Breakpoint Window — Context Menu — Disable (Shift+F9)

7.8.19.5 Trace.ClearAllPoints

Clears all tracepoints.

Prototype
int Trace.C earAll Points();

Return Value

-1: error
0: success

GUI Access

Breakpoint Toolbar — Clear All Tracepoints

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

267 CHAPTER 7 User Actions

7.8.19.6 Trace.ExportCSV

Exports the contents of the Instruction Trace Window to a CSV file.

Prototype
int Trace. Export CSV(const char* sFil ePath);

Return Value

-1: error
0: success

GUI Access

Instruction Trace Window — Context Menu — Export

7.8.20 Watch Actions

7.8.20.1 Watch.Add
Adds an expression to the Watched Data Window (see Watched Data Window on page 133).

Prototype
i nt Watch. Add(const char* sExpression);
Return Value

-1: error
0: success

GUI Access
Watched Data Window — Context Menu — Add (Alt+Shift+Plus)

7.8.20.2 Watch.Insert

Inserts an expression into the Watched Data Window (see Watched Data Window on
page 133).

Prototype

int Watch. I nsert(const char* sExpression);

Return Value

-1: error
0: success

GUI Access

None

7.8.20.3 Watch.Remove

Removes an expression from the Watched Data Window (see Watched Data Window on
page 133).

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

268 CHAPTER 7 User Actions

Prototype
i nt Watch. Renove(const char* sExpression);
Return Value

-1: error
0: success

GUI Access

Watched Data Window — Context Menu — Remove (Del)

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

269 CHAPTER 7 JavaScript Classes

7.9 JavaScript Classes

This section provides a quick reference on Ozones build-in JavaScript classes that are pro-
vided for the development of JavaScript plugins.

7.9.1 Threads Class

The Thr eads class supports the implementation of RTOS-awareness plugins by providing
methods that control and edit the RTOS Window (see RTOS Window on page 117). Methods
of the Thr eads class that do not specify a table name parameter target the “active” table
of the RTOS Window. The active table is usually the table that has been added last. The
active table can be switched via methods Thr eads. newqueue, Thr eads. set Col ums2 and
Thr eads. add2.

7.9.1.1 Threads.add
Appends a data row to the active table of the RTOS Window.

Prototype
voi d Threads. add (s1, .., sN, x);
Argument Meaning
s1,...,sN Text to be inserted into columns 0 to n
X a generic parameter described below

Additional Description

The last parameter is either:

e an integer value that identifies the task, usually the address of the task’s control block.
e an unsigned integer array containing the register values of the task. The array must be
sorted according to the logical register indexes as defined by the ELF-DWARF ABI.

The first option should be preferred since it defers the readout of the task registers until
the task is activated within the RTOS Window (see method getregs on page 175).

The special task identifier value undefined indicates to the debugger that the task registers
are the current CPU registers. In this case, the debugger does not need to execute method
getregs.

7.9.1.2 Threads.add2
Appends a data row to a specific table of the RTOS Window.

Prototype
voi d Threads. add2 (sTable, sl, ..,sN);
Argument Meaning
sTable Table name
s1,...,sN Text to be inserted into columns 0 to n

Additional Description

When the specified table does not exist, it is added implicitly. The specified table becomes
the active table of the RTOS Window.

7.9.1.3 Threads.clear

Removes all rows from all tables of the RTOS Window. Table columns remain unchanged.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

270 CHAPTER 7 JavaScript Classes

Prototype

void Threads. clear (void);

7.9.1.4 Threads.newqueue
Appends a table to the RTOS Window.

Prototype
voi d Threads. newqueue (sTabl e);

Argument Meaning
sTable Table name

Additional Description
The specified table becomes the active table of the RTOS Window.

7.9.1.5 Threads.shown

Indicates if a RTOS Window table is currently visible.

Prototype
i nt Threads. shown (sTable);

Argument Meaning
sTable Table name

0: table is not shown
1: table is shown

Additional Description

7.9.1.6 Threads.setColumns
Sets the column titles of the active table of the RTOS Window.

Prototype
voi d Threads. set Col ums (s1,..,sN);

Argument Meaning
s1,...,sN Column titles

Additional Description

When no table has been added to the RTOS Window before this method is executed, a
default table will be added. The default table can be accessed via the table name “Default”.

7.9.1.7 Threads.setColumns2
Sets the column titles of a RTOS Window table.

Prototype

voi d Threads. set Col unms2 (sTable, s1,..,sN);
Argument Meaning

sTable Table name

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

271 CHAPTER 7 JavaScript Classes

Argument Meaning

sl,...,sN Column titles

Additional Description

When the RTOS Window does not contain a table of the given name, a new table is added
to the window and its columns are set.

The specified table becomes the active table of the RTOS Window.
7.9.1.8 Threads.setColor
Assigns a task list highlighting scheme to the RTOS Window.

Prototype
voi d Threads. set Col or (sTitle, sReady, sExecuting, sWiiting);

Argument Meaning
sTitle Title of the table column that displays the task status
sReady Display text for task status “ready”

sExecuting | Display text for task status “executing”

sWaiting Display text for task status “waiting”

Additional Description

e the task whose status text matches “sExecuting” will be highlighted in green.
o all tasks whose status text match “sReady” will be highlighted in light green.
e all tasks whose status text match “sWaiting” will be highlighted in light red.

7.9.1.9 Threads.setSortByNumber

Specifies that a particular table column should be sorted numerically rather than alphabet-
ically.

Prototype
voi d Threads. set Sort ByNunber (sCol Title);

Argument Meaning

sColTitle Column title

Additional Description
The method acts upon the active table of the RTOS Window.

7.9.2 Debug Class

The Debug class provides methods that expose debugger functionality to JavaScript plugins.

7.9.2.1 Debug.evaluate

Evaluates a C-style symbol expression.

Prototype

voi d Debug. eval uate (sExpression);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

272

7.9.

CHAPTER 7 JavaScript Classes

Argument Meaning

sExpression Ozone expression (see Working With Expressions on page 154)

Return Value

Success: JavaScript object corresponding to the evaluated expression
Failed: value undefined

Additional Description

When the input expression evaluates to a complex-type symbol, a JavaScript object is
returned that exactly mirrors this symbol. The member tree of the returned object is fully
initialized but pointer members cannot be dereferenced.

Example

var d obal = Debug. eval uate(“*(0S_G.OBAL_STRUCT*) 0x20002000") ;
var Count = d obal . Counters. Cnt;

3 Targetinterface Class

The Tar get I nter f ace class provides methods that access target memory and registers.

7.9.3.1 Targetinterface.findByte

Searches a memory block for a particular byte value.

Prototype

int Targetlnterface.findByte (Addr, Size, Val ue);
Argument Meaning

Addr Base address of the memory block to search

Size Size of the memory block to search

Value Byte value to search

Return Value

>0: byte offset of the matching byte
-1: no match found

7.9.3.2 TargetInterface.findNotByte

Searches a memory block for the first byte not matching a particular value.

Prototype

int Targetlnterface.findNotByte (Addr, Size, Val ue);
Argument Meaning

Addr Base address of the memory block to search

Size Size of the memory block to search

Value Match value

Return Value

>0: byte offset of the first byte not matching “Value”
-1: not found, i.e. all bytes match “Vvalue”

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

273 CHAPTER 7 JavaScript Classes

7.9.3.3 Targetinterface.peekBytes

Returns target memory data.

Prototype
Array Targetlnterface. peekBytes (Addr, Size);

Argument Meaning
Addr Base address to read from
Size Number of byte to read

Return Value

Success: memory data (as byte array)
Failed: value undefined

7.9.3.4 Targetinterface.peekWord

Returns a word from target memory.

Prototype

unsi gned int Targetlnterface. peekWord (Addr);
Argument Meaning

Addr Memory address

Return Value

Success: data word
Failed: value undefined

7.9.3.5 Targetinterface.message

Logs a message to the Console Window (see Console Window on page 82).

Prototype

voi d Targetlnterface. nessage (Text);

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

Chapter 8
Support

How to Report Bugs

Users are kindly asked to include the following information in Ozone bug reports:

A detailed description of the problem

Your OS and version

Your debug probe model (e.g. J-Trace PRO Cortex-M V2)

Information about your target hardware (processor, board, etc.)

When possible an Ozone-log of the problem (for this, start Ozone with argument -
logfile <filepath>")

Users without a support agreement with SEGGER are kindly asked to report bugs at the
general room of SEGGER’s forum .

Users which are entitled to support should use the contact information below.

Contact Information
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger.com

Internet: www. segger.com

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

https://forum.segger.com
https://www.segger.com

Chapter 9

Glossary

This chapter explains the meanings of key terms and abbreviations used throughout this
manual.

Big-endian

Memory organization where the least significant byte of a word is at a higher address than
the most significant byte. See Little-endian.

BMA

Background Memory Access. Targets featuring BMA support memory accesses while the
CPU is running.

Command Prompt

The console window’s command input field.

Debuggee

Same as Program.

Debugger

Ozone.

Device

The Microcontroller on which the debuggee is running.

Halfword

A 16-bit unit of information.

Host

The PC that hosts and executes Ozone.

ID

Identifier.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

276

CHAPTER 9

Joint Test Action Group (JTAG)
The name of the standards group which created the IEEE 1149.1 specification.

Little-endian

Memory organization where the least significant byte of a word is at a lower address than
the most significant byte. See also Big-endian.

MCU

Microcontroller Unit. A small computer on a single integrated circuit containing a processor
core, memory, and programmable input/output peripherals.

J-Link OB
A J-Link debug probe that is integrated into the target (*on-board”).

PC

Program Counter. The program counter is the address of the machine instruction that is
executed next.

Processor Core

The part of a microprocessor that reads instructions from memory and executes them,
including the instruction fetch unit, arithmetic and logic unit, and the register bank. It
excludes optional coprocessors, caches, and the memory management unit.

Program

Application program that is being debugged and that is running on the target device.

RTOS

Real Time Operating System; an operating system employed within an embedded system.

SVD
System View Description, a standard by ARM for describing the register layout of an MCU.

Target

Same as Device. Sometimes also referred to as “Target Device”.

Target Application

Same as Program.

User Action

A particular operation of Ozone that can be triggered via the user interface or program-
matically from a script function.

Window

Short for debug information window.

Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless oth-
erwise stated.

Ozone User Guide & Reference Manual (UM08025) © 2013-2019 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Introduction
	What is Ozone?
	Features of Ozone
	Fully Customizable User Interface
	Scripting Interface
	RTOS Awareness
	Code Profiling
	Power Profiling
	Data Graphs
	Timeline
	Instruction Trace
	Unlimited Flash Breakpoints
	Wide Range of Supported File Formats
	Peripheral and CP15 Register Support
	Extensive Printf-Support
	Advanced Memory Window
	Disassembly Export
	Instruction Set Simulation

	Requirements
	Supported Operating Systems
	Supported Target Devices
	ARM
	RISC-V
	Target Support Plugins

	Supported Debug Interfaces
	Supported Programming Languages

	Getting Started
	Installation
	Installation on Windows
	Multiple Installed Versions

	Uninstallation on Windows
	Installation on Linux
	Installer
	Binary Archive
	Library Dependencies
	Multiple Installed Versions

	Uninstallation on Linux
	Uninstall Commands
	Removing Application Settings

	Installation on macOS
	Installer
	Disk Image
	Multiple Installed Versions

	Uninstallation on macOS
	Removing Application Settings

	Using Ozone for the first time
	Project Wizard
	Starting the Debug Session

	Graphical User Interface
	User Actions
	Action Tables
	Executing User Actions
	User Action Hotkeys

	Dialog Actions

	Change Level Highlighting
	Main Window
	Menu Bar
	File Menu
	View Menu
	Find Menu
	Debug Menu
	Tools Menu
	Window Menu
	Help Menu

	Toolbars
	Showing and Hiding Toolbars
	Arranging Toolbars
	Docking and Undocking Toolbars

	Status Bar
	Status Message
	Window Context Information
	Connection State

	Debug Information Windows
	Context Menu
	Display Format
	Window Layout
	Change Level Highlighting
	Code Windows
	Table Windows

	Code Windows
	Program Execution Point
	Active Code Window
	Recognizing the Active Code Window
	Switching the Active Code Window

	Breakpoint Bar
	Showing an Hiding the Breakpoint Bar
	Breakpoint Bar Icons

	Code Line Highlighting
	Breakpoints
	Toggling Breakpoints
	Enabling and Disabling Breakpoints
	Editing Advanced Breakpoint Properties

	Code Profile Information
	Hardware Requirements
	Execution Counters
	Execution Counter Highlighting
	Execution Profile Tooltips

	Table Windows
	Expandable Rows
	Sortable Columns
	Switchable Columns
	Editable Columns
	Letter Key Navigation
	Filter Bar
	Value Range Filters
	Filter Bar Context Menu

	Window Layout
	Opening and Closing Windows
	Undocking Windows
	Docking and Stacking Windows

	Dialogs
	Breakpoint Properties Dialog
	Code Profile Report Dialog
	Code Profile Report

	Data Breakpoint Dialog
	Disassembly Export Dialog
	Exemplary Output

	Find In Files Dialog
	File Search Scope

	Generic Memory Dialog
	Save Memory Data
	Load Memory Data
	Fill Memory

	Instruction Trace Export Dialog
	Exemplary Output

	J-Link Settings Dialog
	Opening the J-Link Settings Dialog
	Applying Changes

	System Variable Editor
	Opening the System Variable Editor
	Editing System Variables Programmatically
	Applying Changes

	Trace Settings Dialog
	Opening the Trace Settings Dialog
	Applying Changes

	User Preference Dialog
	Opening the User Preference Dialog
	Dialog Components
	General Application Settings
	Call Stack Window Settings
	Call Graph Window Settings
	Console Window Settings
	Data Graph Window Settings
	Disassembly Window Settings
	Functions Window Settings
	Instruction Trace Window Settings
	Power Graph Window Settings
	Source Viewer Settings
	Table Window Settings
	Terminal Window Settings
	Timeline Window Settings
	Appearance Settings
	Specifying User Preferences Programmatically

	Quick Find Widget
	Search Modes
	Text Search Options

	Debug Information Windows
	Breakpoints/Tracepoints Window
	Breakpoint Properties
	Derived Breakpoints
	Breakpoint Dialog
	Editing Breakpoints Programmatically
	Context Menu
	Offline Breakpoint Modification
	Table Window

	Call Graph Window
	Overview
	Table Columns
	Table Window
	Uncertain Values
	Recursive Call Paths
	Function Pointer Calls
	Context Menu
	Accelerated Initialization

	Call Stack Window
	Overview
	Table Columns
	Unwinding Stop Reasons
	Active Call Frame
	Context Menu
	User Preferences
	Table Window

	Code Profile Window
	Setup
	Code Statistics
	Execution Counters
	Table Window
	Filters
	Adding and Removing Profile Filters
	Adding and Removing Coverage Filters
	Filtering Code Alignment Instructions
	Observing the List of Active Filters

	Context Menu
	Selective Tracing

	Console Window
	Command Prompt
	Message Types
	Command Feedback Messages
	J-Link Messages

	Script Function Messages
	Message Colors
	Context Menu
	Command Help

	Data Graph Window
	Overview
	Requirements
	Window Layout
	Setup View
	Signal Statistics
	Context Menu

	Graphs View
	Plot Legend
	Sample Cursor
	Hover Cursor
	Interaction
	Context Menu

	Samples View
	Context Menu

	Toolbar
	Sampling Frequency
	Timescale
	Clear Event

	Power Graph Synchronization

	Disassembly Window
	Assembly Code
	Execution Counters
	Base Address
	Setting the Base Address
	Scrolling the Base Address

	Context Menu
	Offline Functionality
	Mixed Mode
	Code Window

	Find Results Window
	Search Results
	Text Search
	Context Menu

	Functions Window
	Function Properties
	Inline Expanded Functions
	Context Menu
	Breakpoint Indicators
	Table Window

	Global Data Window
	Context Menu
	Data Breakpoint Indicator
	Table Window

	Instruction Trace Window
	Setup
	Instruction Row
	Instruction Stack
	Call Frame Blocks
	Backtrace Highlighting
	Hotkeys
	Context Menu
	Selective Tracing
	Export
	Automatic Data Reload
	Limitations

	J-Link Control Panel
	Overview

	Local Data Window
	Overview
	Auto Mode
	Context Menu
	Data Breakpoint Indicator
	Table Window

	Memory Window
	Window Layout
	Base Address
	Setting the Base Address
	Scrolling the Base Address

	Symbol Drag & Drop
	Toolbar
	Generic Memory Dialog
	Change Level Highlighting
	Periodic Update
	User Input
	Copy and Paste
	Context Menu
	Multiple Instances

	Memory Usage Window
	Overview
	Requirements
	Window Layout
	Setup
	Supplying Segment Information

	Interaction
	Scrolling
	Zooming

	Context Menu

	Power Graph Window
	Hardware Requirements
	Setup
	Usage
	Cursor Synchronization
	Sample Limit

	Registers Window
	SVD Files
	Register Groups
	Bit Fields
	Processor Operating Mode
	Context Menu
	Table Window
	Multiple Instances

	RTOS Window
	RTOS Plugin
	RTOS Informational Views
	Task Context Activation
	Context Menu

	Source Files Window
	Source File Information
	Unresolved Source Files
	Context Menu
	Table Window

	Source Viewer
	Supported File Types
	Execution Counters
	Opening and Closing Documents
	Editing Documents
	Document Tab Bar
	Tab Bar Context Menu

	Document Header Bar
	Expression Tooltips
	Symbol Tooltips
	Expandable Source Lines
	Key Bindings
	Syntax Highlighting
	Source Line Numbers
	Context Menu
	Font Adjustment
	Code Window

	Terminal Window
	Supported IO Techniques
	Terminal Prompt
	Context Menu

	Timeline Window
	Setup
	Overview
	Exception Frames
	Frame Tooltips
	Timescale
	Sample Cursor
	Hover Cursor
	Instruction Ticks
	Backtrace Highlighting
	Task Context Highlighting
	Interaction
	Panning
	Zooming
	Measuring Time Distances

	Time Reference Points
	Settings
	Context Menu

	Watched Data Window
	Adding Expressions
	Local Variables
	Live Watches
	Table Window
	Context Menu

	Debugging With Ozone
	Project Files
	Project File Example
	Opening Project Files
	Creating Project Files
	Project Settings
	Specifying Project Settings
	Program File
	Hardware Settings
	RTOS Plugin
	Target Support Plugin
	Source File Resolution Settings
	Behavioral Settings
	Required Project Settings

	User Files

	Program Files
	Supported Program File Types
	Symbol Information
	Opening Program Files
	Data Encoding

	Starting the Debug Session
	Connection Mode
	Download & Reset Program
	Attach to Running Program
	Attach & Halt Program
	Setting the Connection Mode

	Initial Program Operation
	Reprogramming the Startup Sequence
	Visible Effects

	Register Initialization
	Overview
	Register Reset Values
	Manual Register Initialization
	Project-Default Register Initialization

	Debugging Controls
	Reset
	Reset Mode

	Step
	Stepping Expanded Source Code Lines

	Resume
	Halt
	Run To
	Set Next Statement
	Set Next PC

	Breakpoints
	Source Breakpoints
	Editing Source Breakpoints

	Instruction Breakpoints
	Editing Instruction Breakpoints

	Derived Breakpoints
	Advanced Breakpoint Properties
	Permitted Implementation Types
	Flash Breakpoints
	Breakpoint Callback Functions
	Offline Breakpoint Modification

	Data Breakpoints
	Data Breakpoint Attributes
	Editing Data Breakpoints

	Program Inspection
	Execution Point
	Static Program Entities
	Data Symbols
	Symbol Tooltips
	Call Stack
	Target Registers
	Target Memory
	Default Memory Access Width

	Inspecting a Running Program
	Live Watches
	Symbol Trace
	Streaming Trace
	Power Trace

	Downloading Program Files
	Download Behavior Comparison
	Script Callback Behavior Comparison
	Avoiding Script Function Recursions
	Downloading Bootloaders

	Terminal IO
	Real-Time Transfer
	RTT Configuration

	SWO
	SWO Configuration

	Semihosting
	Semihosting Configuration

	Working With Expressions
	Areas of Application
	Operands
	Operators
	Type Casts

	Locating Missing Source Files
	Causes for Missing Source Files
	Missing File Indicators
	File Path Resolution Sequence
	Operating System Specifics

	Setting Up Trace
	Trace Features Overview
	Target Requirements
	Target Requirements for ETB Trace
	Target Requirements for ETM Trace

	Debug Probe Requirements
	Trace Settings

	Setting Up The Instruction Cache
	Selective Tracing
	Overview
	Requirements
	Tracepoints
	Scope

	Advanced Program Analysis And Optimization Hints
	Program Performance Optimization
	Scenario

	Messages And Notifications
	Message Format
	Message Codes
	Logging Sinks
	Debug Console
	Application Logfile
	Other Logfiles

	Other Debugging Activities
	Finding Text Occurrences
	Saving And Loading Memory
	Relocating Symbols
	Terminal Input
	Closing the Debug Session

	Scripting Interface
	Project Script
	Script Language
	Script Functions Overview
	Event Handler Functions
	User Functions
	Process Replacement Functions
	Debugger API Functions
	Process Replacement Functions
	DebugStart
	TargetConnect
	TargetDownload
	TargetReset

	Executing Script Functions

	RTOS Awareness Plugin
	Script Language
	Loading the Plugin
	Script Functions Overview
	Debugger API
	Writing the RTOS Plugin
	init
	update
	getregs
	getname
	getOSName
	gettls
	getContextSwitchAddrs
	Iterating the Task List
	Computing The Stack Usage
	Convenience Methods

	Compatibility with Embedded Studio
	DLL Plugins

	Incorporating a Bootloader into Ozone's Startup Sequence

	Appendix
	Value Descriptors
	Frequency Descriptor
	Source Code Location Descriptor
	Color Descriptor
	Font Descriptor
	Coprocessor Register Descriptor
	ARM

	System Constants
	Host Interfaces
	Target Interfaces
	Boolean Value Constants
	Value Display Formats
	Memory Access Widths
	Access Types
	Connection Modes
	Reset Modes
	Breakpoint Implementation Types
	Trace Sources
	Tracepoint Operation Types
	Newline Formats
	Trace Timestamp Formats
	Code Profile Export Formats
	Code Profile Export Options
	Session Save Flags
	Font Identifiers
	Color Identifiers
	User Preference Identifiers
	System Variable Identifiers

	Command Line Arguments
	Project Generation
	Appearance and Logging

	Directory Macros
	Environment Variables

	Startup Sequence Flow Chart
	Errors and Warnings
	Action Tables
	Breakpoint Actions
	Code Profile Actions
	Debug Actions
	Edit Actions
	ELF Actions
	File Actions
	Find Actions
	Help Actions
	J-Link Actions
	OS Actions
	Project Actions
	Script Actions
	Target Actions
	Tools Actions
	Toolbar Actions
	Trace Actions
	Utility Actions
	Show Actions
	Window Actions
	Watch Actions

	User Actions
	File Actions
	File.NewProject
	File.NewProjectWizard
	File.Open
	File.OpenRecent
	File.Find
	File.Load
	File.Close
	File.CloseAll
	File.CloseAllButThis
	File.SaveAll
	File.SaveProjectAs
	File.Exit

	Find Actions
	Find.Text
	Find.TextInFiles
	Find.Function
	Find.GlobalData
	Find.SourceFile

	Tools Actions
	Tools.JLinkSettings
	Tools.TraceSettings
	Tools.Preferences
	Tools.SysVars

	Edit Actions
	Edit.Preference
	Edit.SysVar
	Edit.Find
	Edit.Color
	Edit.Font
	Edit.DisplayFormat
	Edit.RefreshRate
	Edit.MemZone

	Window Actions
	Window.Show
	Window.Close
	Window.CloseAll
	Window.SetDisplayFormat
	Window.Add
	Window.Insert
	Window.Remove
	Window.Clear
	Window.ExpandAll
	Window.CollapseAll

	Toolbar Actions
	Toolbar.Show
	Toolbar.Close

	Show Actions
	Show.Memory
	Show.Source
	Show.Data
	Show.Disassembly
	Show.CallGraph
	Show.InstTrace
	Show.Line
	Show.PC
	Show.PCLine
	Show.NextResult
	Show.PrevResult

	Utility Actions
	Util.Sleep
	Util.Log
	Util.LogHex

	Script Actions
	Script.Exec
	Script.DefineConst

	Debug Actions
	Debug.Start
	Debug.Stop
	Debug.Disconnect
	Debug.Connect
	Debug.SetConnectMode
	Debug.Continue
	Debug.Halt
	Debug.Reset
	Debug.SetResetMode
	Debug.StepInto
	Debug.StepOver
	Debug.StepOut
	Debug.SetNextPC
	Debug.SetNextStatement
	Debug.RunTo
	Debug.Download
	Debug.ReadIntoInstCache
	Debug.IsHalted

	Help Actions
	Help.About
	Help.Manual
	Help.Commands

	Project Actions
	Project.SetDevice
	Project.SetHostIF
	Project.SetTargetIF
	Project.SetTIFSpeed
	Project.SetJTAGConfig
	Project.SetBPType
	Project.SetCorePlugin
	Project.SetOSPlugin
	Project.SetRTT
	Project.AddRTTSearchRange
	Project.SetTraceSource
	Project.SetSemihosting
	Project.ConfigSemihosting
	Project.SetTracePortWidth
	Project.SetTraceTiming
	Project.ConfigSWO
	Project.SetMemZoneRunning
	Project.AddSvdFile
	Project.AddFileAlias
	Project.AddRootPath
	Project.AddPathSubstitute
	Project.AddSearchPath
	Project.SetJLinkScript
	Project.SetJLinkLogFile
	Project.RelocateSymbols
	Project.SetConsoleLogFile
	Project.SetTerminalLogFile
	Project.DisableSessionSave

	Code Profile Actions
	Profile.Exclude
	Profile.Include
	Coverage.Exclude
	Coverage.Include
	Coverage.ExcludeNOPs
	Profile.Export
	Profile.ExportCSV

	Target Actions
	Target.SetReg
	Target.GetReg
	Target.WriteU32
	Target.WriteU16
	Target.WriteU8
	Target.ReadU32
	Target.ReadU16
	Target.ReadU8
	Target.SetAccessWidth
	Target.FillMemory
	Target.SaveMemory
	Target.LoadMemory
	Target.SetEndianess
	Target.SetFPU
	Target.LoadMemoryMap
	Target.AddMemorySegment

	J-Link Actions
	Exec.Connect
	Exec.Reset
	Exec.Download
	Exec.Command

	OS Actions
	OS.AddContextSwitchSymbol

	Breakpoint Actions
	Break.Set
	Break.SetEx
	Break.SetOnSrc
	Break.SetOnSrcEx
	Break.SetType
	Break.Clear
	Break.ClearOnSrc
	Break.Enable
	Break.Disable
	Break.EnableOnSrc
	Break.DisableOnSrc
	Break.Edit
	Break.SetOnData
	Break.ClearOnData
	Break.ClearAll
	Break.ClearAllOnData
	Break.EnableOnData
	Break.DisableOnData
	Break.EditOnData
	Break.SetOnSymbol
	Break.ClearOnSymbol
	Break.EnableOnSymbol
	Break.DisableOnSymbol
	Break.EditOnSymbol
	Break.SetCommand
	Break.SetCmdOnAddr

	ELF Actions
	Elf.GetBaseAddr
	Elf.GetEntryPointPC
	Elf.GetEntryFuncPC
	Elf.GetExprValue
	Elf.GetEndianess

	Trace Actions
	Trace.SetPoint
	Trace.ClearPoint
	Trace.EnablePoint
	Trace.DisablePoint
	Trace.ClearAllPoints
	Trace.ExportCSV

	Watch Actions
	Watch.Add
	Watch.Insert
	Watch.Remove

	JavaScript Classes
	Threads Class
	Threads.add
	Threads.add2
	Threads.clear
	Threads.newqueue
	Threads.shown
	Threads.setColumns
	Threads.setColumns2
	Threads.setColor
	Threads.setSortByNumber

	Debug Class
	Debug.evaluate

	TargetInterface Class
	TargetInterface.findByte
	TargetInterface.findNotByte
	TargetInterface.peekBytes
	TargetInterface.peekWord
	TargetInterface.message

	Support
	Glossary

